
Grammars of Process
Agency, Collective Becoming, and

the Organization of Software

Name: John C. Haltiwanger

Student Number: 6100473

Email: john.haltiwanger@gmail.com

Website: http://drippingdigital.com/

Date: 2 September 2010

Supervisor: Richard Rogers

Second reader: Geert Lovink

Institution: Universiteit van Amsterdam

Department: Media and Culture (New Media)

Keywords

media theory, generative design, FLoSS, ontogenesis, individuation, process ori­

ented perspective, typesetting

This thesis is dedicated to
the living memories of Caroline Gallagher and Jacob Renshaw.

Though forever is longer than
the time we meet again,
in the space between
this now and our then,
as absence brings you
into moments, I’ll miss
you, my friends.

Abstract

Despite years of theorization, a concise definition of what consti­

tutes a medium remains elusive. Theorists have variously described me­

dia as extensions of human senses (Marshall McLuhan), as agents of re­

form ruled by a double-logic of remediation (Jay David Bolter and Robert

Grusin), as aggregates of material specificity (N. Katherine Hayles), and

as evolutionarily selected forms defined by their effects (Lev Manovich).

While all of these theorists use examples of and from specific media, none

of them explicitly address the specificities of media themselves. This thesis

proposes viewing media through an analytics of becoming in an attempt

to address this slipperiness that has resulted from unclear definitions of

the concept—a slipperiness that only intensifies within the context of the

computer metamedium. Media are seen as reflexive sites in which hu­

mans create grammars that organize and distribute processes. As reflexive

sites, they both change and are changed by human beings. The reflexive­

ness of the computer metamedium, defined as it is by its programmability,

inspires an investigation into the dynamic and co-evolving relationship

between the human and the digital. The practice of generative design is

selected as an evocative instance of this relationship, and a reflexive en­

gagement with the practice is undertaken as the thesis becomes a site of

generative typesetting. Undergoing this practice-based approach leads to

complications with existing theorizations of media and also allows for the

articulation of free, libre, and open source software as a reflexive site of

agency for collective change. The concept of process utilized here is orga­

nized according to Gilbert Simondon’s theory of ontogenesis, a framework

that questions ‘becoming’ rather than ‘being’ and in so doing provides a

mechanism for explaining collective change.

7

Acknowledgments . 11

Introduction . 13

The Elusive Definition of ‘Medium’ . 14

Constraints as Engines of Individuation . 17

Interface, Constraint . 17

The Position of Source Code in Ontogenesis . 19

Reflexive Methodology: Generative Typesetting as a Case Study 20

The Relevance of this Case Study . 21

1 Theoretical Conditions . 23

1.1 Marshall McLuhan and Media Formalism . 24

1.2 Bolter and Grusin’s Double-Logic of Remediation . 26

1.3 N. Katherine Hayles and Medium Specificity . 27

1.4 Lev Manovich and Media Hybridity . 28

1.5 Process-Oriented Perspective . 29

1.5.1 Attributes of Process . 31

1.6 Generative Design Begins With Words . 32

1.7 Processes Within the Borderland . 33

2 Ontogenesis and Generative Design . 35

2.1 The Transduction of Source Code . 35

2.1.1 Elements of Ontogenesis . 36

2.2 Examples of Generative Design . 38

2.2.1 Information Visualization . 38

2.2.2 Generative Computer Demos . 39

2.2.3 Generative Efficiency . 40

2.2.4 Extrapolative Generativity . 41

2.3 Transindividuation: The Relevance of Ontogenesis . 41

3 Operating Systems . 43

3.1 Alan Kay and a ‘Metamedium’ Vision for Personal Computing 43

3.2 The Evolving Nature of Operating Systems . 46

3.2.1 Unix as a Processual Grammar . 48

3.2.2 Mac OS X: Process Hybridity in Action . 51

Grammars of Process 8

3.3 Individual Operating Systems Are Processual Grammars 55

3.4 Why free software? . 55

3.4.1 Attributes of Repressive versus Emancipatory Media 56

3.4.2 Example: FLoSS as a Foundation for Critically Engaging Media Design . 59

3.4.3 Caveats . 59

3.4.4 Reciprocal Conversations of Code . 59

3.4.5 Recursive Publics and Transindividuation . 61

4 Text as Interface/Text as Process . 63

4.1 Remediation and the Command Line . 65

4.1.1 Interface: From Wires to Text . 65

4.1.2 The Command Line is a Medium . 67

4.1.3 Commands are Processual Grammars . 68

5 Top Down/Bottom Up . 71

5.1 WYSIWYG . 71

5.2 Processed Text . 72

5.2.1 HTML, or Semantic Markup is Literally an Organizational Grammar . . . 73

5.2.1.1 HTML as a Productive Site of Transduction . 73

5.2.2 TEX, or Text That Typesets Itself . 75

5.2.2.1 ConTEXt as a Perpetual Becoming . 76

6 Generative Typesetting . 79

6.1 Environment of Operation . 79

6.1.1 Markdown and Preindividuality . 80

6.2 Constraints . 82

6.2.1 Glue, or, A Pre-Format Necessarily Complicates While it Simplifies 82

6.2.2 Regular Expressions Build This Thesis . 84

6.3 Getting Beyond Glue . 87

7 Conclusion . 89

7.1 Conditions and Process . 89

7.2 Ontogenesis is Non-Deterministic . 90

7.3 Implications for the Metastability . 92

9

Bibliography . 95

Grammars of Process 10

Acknowledgments

The final shape of this thesis is deeply indebted to those who have helped me along the

way. First I would like to thank Richard Rogers. Without his pressure to elevate the dis­

cussion contained within my thesis, I fear that the project would ultimately demonstrate

little of whatever theoretical power it currently enjoys. Likewise, without Geert Lovink

the project would not exist in the first place, as it was his request for a post-journal

publishing platform that started me on this quest of generative typesetting for multi­

ple output formats. Thanks also to Florian Cramer, not least for explaining that simply

typesetting the thesis in two formats was enough technical work for a single-year mas­

ters thesis but also for providing a strong perspective from which to begin. I am deeply

indebted to Michael Jason Dieter for introducing me to the work of Gilbert Simondon,

without whose theory this thesis would not be feasible. Huge thanks go to Femke Snelt­

ing and Pierre Huyghebaert for their indispensable interview and for welcoming me

into their extremely creative network. To that end, I’d like to offer additional thanks An

Mertens, Michael Murtaugh, Peter Westenberg, Jon Phillips, and all the great folks I met

at the Libre Graphics Meeting and the Active Archives workshop.

To my colleagues at the UvA, for helping me to stay sane in the midst of an insane

project: Hania Pietrowska, Rakesh Kanhai, Sarah Moore, Morgan Curry, Marc Stumpel,

Allison Guy, Ramses Petronia, and Natalia Sanchez. Every day I grow to further realize

that without my friends, I am nothing. Finally, a sincere thanks to all those who have

shared insights and conversations with me as I pushed to develop my ideas further.

And last, but never least, my family. Thank you Mom, Dad, Brett, Julia, and Ann for

your unwavering love and support. It could not have happened without you.

Introduction

The core idea of this thesis springs from a practical consideration, namely the require­

ments of modern academic publishing in an open-access context. In order to be view­

able on the Web, writing must be published in the format of the web, HTML (Hyper­

Text Markup Language). Yet HTML is not known for a high degree of typographic

quality or even stability, as documents look different between operating systems and

browser implementations. The answer is the use of PDF (Portable Document Format),

a format which theoretically looks the same regardless of which program is viewing it

and, through its roots as a format intended for printing, contains a great deal more ty­

pographic features than HTML. Additionally, neither format is particularly friendly for

writing directly: HTML’s syntax is notoriously chunky, while writing directly into a PDF

in an interface similar to that of Microsoft Word requires expensive proprietary software

such as Adobe InDesign.

However, it is possible to address this issue from a perspective of generative design
wherein we seek to output both HTML and PDF through the coupling of a user-friendly

input format (i.e. much simpler and less intrusive than HTML) and translation software

that could take this input and generate both outputs. This represents idea of a thesis

which not only writes about generative design but which also practices it. My case study,

then, is the generative typesetting of the thesis itself. In order to theoretically engage this

case study, it is my opinion that the conditions in which the study is performed need to be

sufficiently elaborated before the study begins. To this extent, a great deal of the content

of this thesis focuses on reviewing past and current media theory as well as the historical

development of the operating systems and interfaces through which generative design

is practiced. In other words, the conditions surrounding the case study need to be visible
before the case study can proceed.

Through the elaboration of these conditions, specific problems with contemporary

media theory are highlighted and a new theoretic framework is proposed based on view­

ing media through an analytic of becoming. It is important to begin by noting, however,

that the theoretical investigation results from the case study itself—the tools required

to describe the dynamics of the case study were assembled through the process of its

Grammars of Process 14

performance. In other words, the generative typesetting of this thesis represents a re­
flexive case study which informs both the content and presentation of the end result in

an inextricable fashion. Because the case study crosses traditional lines of media in an

interesting way, the first point of order is to begin with the conditions of our theoretical

understanding of media today.

The Elusive Definition of ‘Medium’

Throughout the history of media studies, an actual academic definition of what consti­

tutes a medium has remained elusive. This is perhaps a result of the influence in the field

of Marshall McLuhan, the man who famously coined phrase “the medium is the mes­

sage.” What he meant by this is that it is only through analyzing a medium itself that

one can begin to understand the effects of that medium. This approach has been fruitful

for many years and remains the impulse behind the current theories within the field of

new media. The details of these theories will be discussed in the first chapter. For now it

is important to note that when theory has strayed from McLuhan’s formula, the results

have been lackluster and counterproductive. The best example of this is the vapor theory
of the 1990s.

The theoretical work being produced in the United States dureing the early 1990s was

often heavily inflected “techno-utopian” rhetoric and was espoused by figures such as

Wired magazine’s Kevin Kelly, Whole Earth Catalog founder Stewart Brand, and theorist

Howard Rheingold, all of whom believed in the potential for a libertarian ‘Jeffersonian

democracy’ to unfold as the result of the Internet. The fallacies of such an approach were

first outlined by Richard Barbrook and Andy Cameron in their essay ‘The Californian

Ideology,’ pointing out that “this utopian fantasy of the West Coast depends upon its

blindness towards—and dependence on—the social and racial polarisation of the society

from which it was born” (Barbrook and Cameron 1995). Despite their accurate refutation

of several main tenets of this libertarian vapor theory, it was not until the crash of the

dot-com bubble that new media texts by and large overcame the utopianist rhetoric. The

theory at hand derived its popularity “from the very ambiguity of its precepts,” and the

collapse of the economy built according to their neoliberal vision seemed to demonstrate

this (Barbrook and Cameron 1995).

Introduction 15

This actual term ‘vapor theory’ was coined by Peter Lunenfeld to describe “a gaseous

flapping of the gums about technologies, their effects and aesthetics, usually generated

with little exposure, much less involvement with those self-same technologies and art­

works” (Lunenfeld 2000). In an interview with Geert Lovink, Lunenfeld explains that he

sees vapor theory as a result of the conditions surrounding the emergence of new media,

an emergence that was attended by “an almost fully formed theoretical context for digital

art and design even before they were fully functional as media technologies” (Lunenfeld

2000).

The result was a call for “[n]o more vapor theory anymore” (Galloway 2004: 17). The

result was a a return to McLuhan’s media formalism: the studying of media as media .

This is the turn that inspires the current drive towards discussing media “materiality.”

The reorientation has been productive, spawning the emergent field of software studies as

well as N. Katherine Hayles’ ‘medium-specific analysis’ (both of which will be discussed

in Chapter 1). Yet it has not necessarily led to clarifying what exactly a medium is. This

situation is only beginning to be fully discussed within new media studies. An interesting

perspective is provided by Australian media theorist Sean Cubitt,

Mostly when we say ‘medium’ we mean something of a pretty high order

of complexity: TV, say. Or, saints preserve us, ‘digital’ (I once wrote a

book called Digital Aesthetics: hubris, to believe that there was only one

aesthetics for the whole digital realm). These media are constructs, not

just feats of engineering but imaginary engines, imaginary in that we as­

cribe to them a coherence they do not actually possess. Convergence is

the tip of the iceberg: so many elements which comprise the digital (and

TV) are shared with other media. Take lens technologies for example.

There are no analog or digital lenses. Each medium is already a dozen

technologies arranged in a system. To label one assemblage ‘photogra­

phy’ is almost silly: we have to look a) at the elements from which it is

composed and b) the commonalities it has with other media. (Cubitt 2010)

This centering of compositional elements is shared by the approach taken here, but

this attempt to highlight commonalities with other media seems too ambitious when a

definition of ‘medium’ remains elusive. In order to surmount this “missing link” of me­

dia theory—the result of only investigating media as media rather than involving their

Grammars of Process 16

external influences—this thesis approaches media through an analytics of becoming. This

process-oriented perspective follows along the lines of an increasingly prevalent focus

on process—Latour’s Actor-Network Theory and Ned Rossiter’s processual media in the

world of theory and the rise of generative design in the world of practice. The analytics of

becoming presented here is based on Simondon’s theory of individuation. Individuation

in a sense dissolves the distinction between human and nonhuman actors: in his theory,

both are formed through individuation and the categories do not exist in the preindi­

vidual/metapotential (Simondon 2009). As the result of an abundance of metapotential,

differences arise within a system. The effect of these differences are individuations, which

become through a process called transduction.

Simondon’s theory is further articulated in the Chapter 2, where I demonstrate the

applicability of this analytics of becoming to discussions of generative design. What is

most important to keep in mind for the purposes of this introduction is the proposed

shift from the current discursive mode of analyzing media from their characteristics as
media to an analytic of becoming which questions the conditions from which a medium

arose as well as the conditions it engenders through its individuation. Through the eluci­

dation of these conditions, a more conservative view of media emerges wherein a given

medium becomes an ecosystem of process hybridities organized by particular grammars
of process.

Hybridization through grammars (i.e. organizational logic) aligns with what Bernard

Stiegler calls ‘grammatization,’

By grammatization, I mean the process whereby the current and continu­

ities shaping our lives become discrete elements. The history of human

memory is the history of this process. Writing, as the breaking into dis­

crete elements of the flux of speech (let us invent the word discretization

for this possibility), is an example of a stage in the process of grammati­

zation. (Stiegler 2010: 70)

This invented word ‘discretization’ is complimentary to the idea of processual gram­

mars in that any process hybridity represents an assembling of these discrete parts under

a new organizational logic. Hybridity is enabled by discretization. Further, Stiegler’s

concept of grammatization is both constitutive and transformative of the human as a set

of distributed agencies. Tied to an analytics of becoming, the undertaking of gramma­

Introduction 17

tization—or, hybridization of process—results in a viewpoint from which we can respond

to and influence this distribution of agency.

Constraints as Engines of Individuation

As mentioned above, Simondon’s individuations result from differences within the

metastasis. Theorist Adrian Mackenzie eloquently articulates this idea in his book Trans­
ductions:

For the process of transduction to occur, there must by some disparity,

discontinuity or mismatch within a domain; two different forms or po­

tentials whose disparity can be modulated. Transduction is a process

whereby a disparity or a difference is topologically and temporally re­

structured across some interface. It mediates different organizations of

energy. (Mackenzie 2002: 25)

These ‘mismatches in the metastasis’ exist as the result of constraints. The resulting

transductions—each of which are an individuation and represent a new hybridization of

process—demonstrate the reflexivity of constraint: by its existence, a constraint accumu­

lates and generates differences (“this is possible, this is not”), yet at the same time it seems

to accumulate and generate solutions as well. These solutions modify the nature of the

constraint, either by erasing it or highlighting its existence in unexpected ways. The rele­

vance of the constraint has been visited before: from Oulipo’s creative engagement with

constraints in their “game-like artificial restriction on writing” to Donald Sutherland’s

integration of constraints as a technique for visual design into his Sketchpad software,

constraints can be viewed in light of what they enable as much as for what they disable
(Cramer 2005: 90; Manovich 2008: 62). Sutherland in particular saw the constraint as a

crucial element of “man-machine communications” (Manovich 2008: 63). An analytics of

becoming requires that we look into the conditions shaping a given individuation. Our

observation of these conditions will yield the presence of systemic constraints which are

continuously transducting with new individuations. As these individuations restructure

the constraints, they distribute agency in specific ways across the metastability.

Interface, Constraint

As an obvious introductory example, a significant constraint as regards a computer is the

Grammars of Process 18

means one is presented for interacting with the machine. This site of interaction—the

interface—has undergone significant change since the early programmable computers.

Each stage of the evolution represents a new hybridization that emerges as the re­

sult of constraints inherent in the conditions from which that new stage—or individ­

uation—springs. The conditions under which the GUI (graphical user interface) and the

CLI (command-line interface)—the two major interfaces in use today—became are elab­

orated in the third and fourth chapters through a discussion of Alan Kay’s work on the

modern GUI at Xerox PARC and the evolution of the CLI as it relates to the individa­

tion of computer programming interfaces, respectively. These two dominant grammars

represent not only divergent means of organizing processes: through their separate or­

ganizational logics, these grammars distribute agency in significantly different ways.

The GUI presents its assemblages of process using metaphors that clearly imply the

existence of a fully formed product. The interrelations of menus, buttons, toolbars, and

entry fields are all contained within the window(s) of a program. The entire collection

of metapotential represented by the program is assumed to be embedded within these

interrelationships, which through their navigability denote an already-present existence:

the feature is there, waiting to be enabled or invoked.

The CLI, on the other hand, hosts mostly programs for which various options must be

enabled at run-time in order to take effect.1 These latent options are generally listed and

described in files called ‘manpages,’ named after the man program with which they are

read. Whereas the GUI is characterized by its high degree of interactivity, CLI programs

require that you define the conditions of their operation before their execution. This

is done by obeying the syntax outlined in the program’s manpage and formulating an

expression of one’s intentions into this syntax. In this way, the CLI distributes agency

more equally between the user and the computer. In other words, the CLI is less abstract
(though obviously not devoid of abstraction) in regards to the operations of the computer

than the heavily metaphoric interface presented in the GUI.

1
The ncurses library enables the development of “GUI-like interfaces” on the CLI (ncurses 2010). However,

this kind of interactivity is not characteristic of the CLI as a whole. Indeed, applications that fit this form

are sometimes grouped under the retronym TUI, for ‘Text User Interface’ (Text user interface 2010). These

programs represent an in-between category of programs on the CLI that do not act like “traditional” CLI

programs.

Introduction 19

The Position of Source Code in Ontogenesis

While perhaps it is not always clearly marked, the objects of study within the field of new

media are not necessarily media at all. Or rather, they are perhaps more properly called

metamedia in that they can play host to other, older forms of media as well as act as a

platform for the development of entirely new media forms (Kay 1977). These features are

the result of the programmable nature of metamedia, wherein the boundaries of opera­

tion of a machine can be altered by changing the software which the machine runs. As

metamedia are defined by this programmability, they are ruled by Galloway’s conception

of protocol in its generation of both the boundaries and the metapotential defined by the

tension between those boundaries. That is, “[p]rotocol outlines the playing field for what

can happen, and where” (Galloway 2004: 167). The political stakes as regards metamedia,

then, are the degree which they can be programmed to enforce constraints. The poten­

tial for locking down emerging metamedia platforms, exemplified by Apple’s approach

with its notoriously gatekept iOS-based devices (iPhone, iPad, etc.), demonstrates this

malleability of constraints within the metamedium. Here the constraints enable features

that are not necessarily beneficial for their users: strict hierarchical control in which

the Apple patriarch defines what is and is not available (and runnable) to users,2 what

programming languages those users can write their programs in, and a standing order

not to duplicate functionality already delivered by Apple software (Hansell 2008; Slepak

2010).

An alternative to this locking down is found within the ecosystem of Free/Libre/Open

Source Software (FLoSS3), wherein the capacity to individually modify the system is a

defining characteristic. This ecosystem exists as a result of an on-going process of col­

2
Tools to “jailbreak” these iOS devices were developed quickly after their release and their emergence easily

demonstrates the productive aspects of constraints. In this case, it effectively to erases the constraint

(Apple’s authority on the device) for an individual system. However the constraint can return through

mechanisms such as system updates (which jailbroken phones cannot as easily participate in) and new

techniques of determining whether an iOS device is engaged in “unauthorized uses” that can not only

remotely deactivate services on the device but can also send GPS location details of the phone (Foresman

2010).
3

The use of the little ‘o’ represents both an aesthetic decision in terms of typographic flow and a (hopefully)

non-confrontational means of representing my weighing in on the ideological differences between free

Grammars of Process 20

lective becoming wherein a worldwide, distributed set of programmers develop software

in order to overcome constraints. In the case of free software, which is characterized by

the un-incorporability of its source code into any software that does not also release its

own source code for modification, the primary constraint that initiated the movement’s

transduction was the shift from an originally characteristic shared code approach to pro­

gramming computers to an increasingly corporate environment in the 1980s that sought

to “divide the users and conquer them” (Stallman 1985: 546). The position of source code

in the emerging field of software studies has been a contested issue, a point which will

be discussed further in Chapter 1.

Reflexive Methodology: Generative Typesetting as a Case Study

As mentioned at the outset, this thesis has a specific case study: the typesetting of itself

in multiple output formats through a generative workflow. Central to ontogenesis is the

question of individuation. As this thesis literally individuates into multiple versions of

itself, this invocation of applied generative design allows ample room for the application

of Simondon’s ontogenesis. This thesis exists additionally, then, within a complex ma­

teriality that highlights the confusion attendant to defining media in terms of material

specificity or as media hybrids.

By examining the underlying processes of presentation required to ‘typeset’ the text

itself, this reflexive methodology provides its own relevance in its very formulation. How

did the words on this page (or screen) come to be? Through the utilization of FLoSS4

software, multiple output formats will be not only be investigated but also materially

instantiated through an intentional organization of process. These output formats repre­

sent two of the top formats currently used to manage and display texts digitally: HTML

(Hypertext Markup Language) and PDF (Portable Document Format). The outputs are

individuated translations of an input file, written in the Markdown format. Questioning

the materiality of this Markdown format is an interesting exercise: What is the material­

ity of a format whose use implies an intention to convert to—to exist as—a multitude of

and open source software development.
4

The use of the little ‘o’ represents both an aesthetic decision in terms of typographic flow and a (hopefully)

non-confrontational means of representing my weighing in on the ideological differences between free

and open source software development.

Introduction 21

other materialities? This type of materiality (transitional, “unfinished”) runs throughout

the field of generative design. By designing, documenting, and describing a genuine gen­

erative workflow I am able to integrate a significant degree of reflexivity into the thesis

at a level of materiality as well as content.

The historical dynamics shaping the condition of this project emerge as I discuss the

specificities of the formats used in this project. As the “content layer” of the World Wide

Web, HTML is the most pervasive, if not also the most well-known, markup language on

the planet. What were the conditions under which HTML emerged? What specificities

does it entail? What processes has it in turn inspired?

The second output format, PDF, is actually achieved through the integration of an

intermediate format, ConTEXt. In specific terms, ConTEXt is a macro package for the

venerable typesetting program called TEX. ConTEXt is a fast-moving project with roots

firmly embedded in a deeper history5 and as such it provides a unique site for articulat­

ing process hybridity. What conditions can be seen as defining ConTEXt? What is its

relationship with PDF?

The Relevance of this Case Study

It is a seemingly rare phenomenon for a media theorist to practically engage with their ob­

jects of investigation. Notable exceptions exist, for example Lev Manovich, who worked

in the field of the ‘cultural computing’ about which he theorizes, and Wendy Hui Ky­

ong Chun, whose background in Systems Design Engineering heavily informs her work

(Manovich 2008; Chun 2004). Also of note is the Digital Methods Initiative, which de­

velops the software it uses in its sociological research. Yet a significant majority of new

media theory seems to operate at a distinct level of distance from the practices involved

in producing their objects of study. This abstraction to some extent mirrors the lack of a

solid definition of ‘medium’ within the field as a whole.

In the case of this thesis, the path of pursuing and interacting with a practical concern

has proven quite productive. Not only does it inspire a shift to an analytics of becoming

5
As Donald Knuth released the first version of TEX in 1978, in 2010 the platform celebrated its 32nd, or 2^8,

birthday.

Grammars of Process 22

through its exposure of problems in applying existing theory to the case study, it ad­
ditionally results in a proposed augmentation to the practice of generative typesetting that
could constitute a better organized processual grammar. In other words, this thesis aims to

improve theory not only by contributing its own perspective—through its implemented,

reflexive methodology, it aims to improve the production of theory as well. The primary

practical suggestion found in this thesis is a type of separation of translation from effect
in regards to generative typesetting. The experiences which inspire this suggestion are

outlined in the final chapter, which covers the case study of generative typesetting. In

order to proceed towards this analysis of the case study, we will now move on to the

theoretical conditions of new media at the time of writing this thesis.

Chapter 1

Theoretical Conditions

Today’s new media theory increasingly invokes materiality as a significant, perhaps even

the significant, mode of investigating digital objects and the media through which they

are delivered. This thesis questions such a centrality of materiality through a prac­

tice-based, process-oriented approach. This approach represents a shift from a critical

discourse based on interrogating media as media to one founded upon an analytics of
becoming, a move which will be shown to provide an alternative methodology for en­

gaging with and understanding software-based media that may be more productive than

what material specificity or effects analysis currently provide. Process also allows a fresh

perspective for examining the relationship between human and non-human actors, in

this case the computer metamedium and the software that runs on it. The human and

non-human are seen as inextricably intertwined, inhabiting and conditioning the same

metastability, and continuously undergoing collective change. This collective change

can be described through Gilbert Simondon’s theory of ontogenesis in which distinctions

such as ‘human’ and ‘non-human’ do not exist in the preindividual state (the metastabil­
ity) from which all individuation emerges (Simondon 2009).

Process has recently elevated as a focal point within the design world as more and

more designers switch to, or otherwise integrate, generative workflows. Generative de­
sign is a form of design in which software algorithms are used from the bottom up,

through source code that directs all drawing and manipulation of the objects the source

describes. This is opposed to the top-down, What You See Is What You Get (WYSIWYG)

style of design embodied in the industry-standard applications from Adobe. New media

theorist Florian Cramer has identified generative design as the cutting edge of design

in the Netherlands (Cramer, Monsoux, and Murtaugh 2010). The emergence of gener­

ative design as a widespread practice is reflected by the Breda-based Graphic Design

Museum’s decision to host an installation of generative works called InfoDecoData, as

well as a symposium of the same name.

Grammars of Process 24

This space of generative design provides an ideal site for investigating questions of

materiality and medium-specificity within the computer metamedium for a number of

reasons. The importance of source code to generative design intersects with an on-going

dialog within software studies concerning the position of source code in a study. Gen­

erative design’s position close to the cutting edge of what is being done with computers

invites inquiry into the processes that are assembled to compose today’s computers. Fi­

nally, the tendency of generative design to involve the command-line interface (CLI)

compels an investigation into specificities this under-theorized, text-based medium and,

by extension, the sustained primacy of text within computer interfaces. This primacy of

text is reflected all the way from source code to the labels on buttons and menus in a

graphical user interface (GUI).

Before explaining in more detail the process-oriented perspective utilized by this

thesis, however, it first seems prudent to visit some of the dominant strains of medium

theorization found in the history of media studies which will be interrogated in this

thesis.

1.1 Marshall McLuhan and Media Formalism

Marshall McLuhan’s prominence in media studies is in no small part related to the pio­

nering role he had in shaping the field. Beginning with his work in analyzing advertising,

published in 1951 as The Mechanical Bride, McLuhan critically integrated the language of

an advertising industry that had developed a vocabulary for considering their new role

in targetting not just print but also television and radio. This critical integration allowed

for a consideration of media on a level that had not, up to that point, emerged. That is to

say, it was his seminal work Understanding Media that proposed that critical engagement

with the media requires studying media themselves, and not simply their content. This

angle of investigation can be considered media formalism, in which the most relevant

avenue for investigating media lies within examinations of media as they are.

One of the means he proposed as a distinguishing characteristic between various

media was the “temperature” of a given medium. Though the wording is perhaps some­

what counter-intuitive, McLuhan defines “hot” media as those media forms which extend

“one single sense in ‘high definition’ ” (McLuhan 1964: 24). The effect of such extension

is a reduction in the involvement of the audience to the medium. A photograph, for in­

Theoretical Conditions 25

stance is “hot,” while a cartoon is “cool” because it contains relatively sparse amounts

of visual information. The phonetic alphabet, McLuhan argues, is a “hot and explosive”

medium, with vastly different effects than the cool medium of ideogrammic writing (25).

In his view, the transformation of the alphabet by the printing press, this “hotting-up”

of writing, led to “nationalism and the religious wars of the sixteenth century” (25). The

temperature of a medium reflected the ratio of its extension to perception. Hot media

are those in which the ratio of extension for a particular sense overwhelms other senses.

The temperature of a medium interacts with the temperature of a culture in a way that

necessarily redefines the culture (and, it could be argued, the medium as well, which may

decrease in effective temperature as the temperature of a culture rises in relation). For

instance, the “hot radio medium used in cool or nonliterate cultures has a violent effect,

quite unlike its effect, say in England or America, where radio is felt as entertainment”

(33). For this and similar views, McLuhan received condemnations as a ‘technological

determinist,’ someone who argues that technology defines culture (Williams 1974).

Such a position, however, is complicated by the simple fact that McLuhan viewed

mediums as extensions of human senses: “All media are extensions of some human fac­

ulty—psychic or physical” (1967: 26). As extensions of the human, any changes imbued

by media into culture necessarily maintain a root cause in the human themselves. This

dynamic is asserted in this thesis as well, which views media as reflexive sites that de­

velop in a state of dynamic equilibrium between human and non-human actors.

McLuhan also developed a pedagogical tool he called the Tetrad. The tetrad is means

of examining media and its effect on society. Phrased as four questions, by its very

phrasing it proposes a sort of physics for media, a description of a dynamic through

which all media undergo upon their development and introduction.

• What does the medium enhance?

• What does the medium make obsolete?

• What does the medium retrieve that had been obsolesced earlier?

• What does the medium flip into when pushed to extremes?

(McLuhan 1988)

Grammars of Process 26

This is a departure from pure techno-determinism because in the end it is human

actors who develop new media forms and embed older forms within them, though the

media themselves come to influence humans as well (as demonstrated by McLuhan’s

elaboration on the effects of ‘hot’ media on ‘cool’ societies).

1.2 Bolter and Grusin’s Double-Logic of Remediation

Jay David Bolter and Richard Grusin take this question of what actually drives the physics

described by the Tetrad. Their conclusion is a form of double-logic that envelopes one

of the key elements of the Tetrad—that new media forms embed the older ones they

replace, a process which they termed remediation—and explains it as the result of two

interacting forces, immediacy and hypermediacy. The logic of immediacy seeks to erase

the “medium-ness” of a medium. This can be seen in the drive for “transparent” inter­

faces: “a transparent interface is one that erases itself, so that the user would no longer

be aware of confronting a medium, but instead would stand in an immediate relationship

to the contents of a medium” (Bolter and Grusin 1996: 318). Hypermediacy, on the other

hand, “acknowledges multiple acts of representation and makes them visible” (328). Hy­

permediacy is, then, an opposing vector, one that delights in highlighting the presence

of the medium rather than attempting to obfuscate or “disappear” it. The root cause of

this process of double-logic, in the end, is the desire to “achieve the real”:

Hypermedia and transparent media are opposite manifestations of the

same desire: the desire to get past the limits of representation and to

achieve the real. They are not striving for the real in a metaphysical sense.

Instead, the real is defined in terms of the viewers experience: it is that

which evokes an immediate (and therefore authentic) emotional response.

Transparent digital applications seek to get to the real by bravely deny­

ing the fact of mediation. Digital hypermedia seek the real by multiplying

mediation so as to create a sense of fullness, a satiety of experience, which

can be taken as reality. (Bolter and Grusin 1996: 343)

Since Bolter and Grusin position mediations themselves as both real and represen­

tations of the real, and remediation as the ‘mediation of mediation,’ then remediation

reforms reality (346). As media are ipso facto sites of mediation, media can be seen as re­

formative agents that are constantly reconfiguring reality. Mediation and reality thus be­

Theoretical Conditions 27

come ‘inseparable,’ in a constant state of mutually reflexive reconfiguration. While their

work provides a useful system for describing the dynamics of media, a solid definition

of what constitutes a medium remains absent. In the case of the computer metamedium,

the elusiveness of a definition for media proves problematic for the accurate application

of their framework.

1.3 N. Katherine Hayles and Medium Specificity

In her essay “Print is Flat, Code is Deep: The Importance of Media-Specific Anaylsis,”

N. Katherine Hayles presents a more technical, or at least specifiable, definition of me­

dia. Calling for a renewed focus on materiality, Hayles presents evidence that literary

hypertext exists in printed books as well as within its familiar context of the computer.

Both printed and screenic hypertext demonstrate medium specificities—that is, in the

process of becoming embodied within one or the other materialities, literary hypertext

displays characteristics that are specific to those materialities. Medium-specific analysis

thus “attends to both the specificity of the form. . .and to citations and imitations of one

medium in another” (Hayles 2004: 69).

Hayles sees materiality as an “interplay” between physical traits and strategies of

signification, “a move that entwines instantiation and signification at the outset” (67).

This formulation moves beyond a specified division of form from content into a holistic

definition that sees those components as intrinsic and inseparable. This flies in the face

of certain ideas surrounding web design, which holds—in its workflow as well as in its

underlying conception—that form and content are separable and distinct.

Hayles’ utilizes her media-specific analysis to demonstrate how the specificities of

print and screen necessarily shape literary hypertexts through materially driven con­

straints. Her conception of media, though not explicit, revolves around this concept of

specificity. If there were no differences in the specificities of print and screen, then there

would be no material differences in the texts she describes. Though Hayles admirably

conceives of materiality as an amorphous interplay between physicality and process,

the focus on specificities creates potential problems when moving into media specific to

the computer. If specificities are used to determine media, and specificities may change

even within different versions of a single program, where do we cease to apply the la­

Grammars of Process 28

bel ‘medium’? Once again the elusiveness of a definition potentially short-circuits the

application of Hayles’ framework to computer-specific media.

1.4 Lev Manovich and Media Hybridity

Lev Manovich’s Software Takes Command is unique in this group in that the theories it

presents are specific to the computer, or at least to metamedia. Manovich first develops

a concept of cultural software based on the premise that the software has become the

“new engine of culture” (2008: 11). Software finds itself in this position thanks to the

status of the computer as a metamedium, defined as such by its programmability. This

programmability allows the computer to not only simulate other media, it also provides

a space for the creation of entirely new media.

Manovich defines these new media according to their hybridization, a process for

which he uses evolution as a metaphor. From this perspective, media hybrids are cre­

ated constantly. After their creation they go through a process of selection and either

“replicate” or die off after failing to propagate (90). Manovich is careful to state that he

is “not making any claims that the actual mechanisms of media evolution are indeed like

the mechanisms of biological evolution” (90).6 Successful media hybrids go on to become

“basic building blocks,” ready for combination with other hybrids.

As a first example, Manovich presents the ‘image map,’ described as “a successful

combination of media ‘genes’ ” (90). Combining hyperlinks with an image, image maps

hybridize both techniques of hypertext and techniques of image manipulation.

When designers start attaching hyperlinks to parts of continuous images

or whole surfaces and hiding them, a new "species" of media is born. As a

new species, it defines new types of user behavior and it generates a new

experience of media. (Manovich 2008: 91)

This phrasing provides a rough version of what, to Manovich, defines a medium:

specificities of interaction and experience. If an image map is a new species of media,

then it logically follows that it is a medium in its own right. The underlying mecha­

nism that thrusts image maps into this position is the representation of hyperlinks as

6
This thesis provides a provisional elucidation of these mechanisms in providing a historical account of

programmer interfaces through the lens of Gilbert Simondon’s transduction.

Theoretical Conditions 29

hidden within a surface that becomes “alive” and displays a continuum of hyperlinking

in which some parts of this surface are “ ‘more’ strongly hyperlinked than others” (91).

That the same effect (a surface with non-obvious internal linking) can be achieved within

text-only HTML by disabling through CSS the coloring and underlining that typically

denote hyperlinks seems to have escaped Manovich’s attention.

This thesis takes a divergent approach, one that would never consider the image map

as a specific medium. Rather, an image map is conceived as a new processual grammar

that hybridizes processes of hypertext and static images to articulate a new domain of

interaction with the user. Whereas Manovich expresses a hybridization of media, then,

this thesis views such a formulation problematic inasmuch as the concept of ‘medium’ is

increasingly vague.

1.5 Process-Oriented Perspective

In his outlining of the nature of a ‘processual media theory,’ Ned Rossiter asserts that

“a processual media theory examines the tensions and torques between that which has

emerged and conditions of possibility; it is an approach that inquires into the potentiality

of motion that underpins the existence and formation of a system” (2007: 178). While

the argument that Rossiter builds in his chapter on the subject revolves mainly around

interrogating and the processes that drive new media within its institutional settings, the

thrust of his argument—that new media empirics must “reflexively engage with the field

of forces that condition its methodology”—maps easily to a more general line of inquiry

(171). This is perhaps best embodied in his explanation of a ‘processual aesthetics7 of

new media’:

A processual aesthetics of new media goes beyond what is simply seen or

represented on the screen. It seeks to identify how online practices are

always conditioned by and articulated with seemingly invisible forces,

institutional desires and regimes of practice. (Rossiter 2007: 174)

While a truly exhaustive investigation of the multitude of relations—social, economic,

technological, ideological—involved in generative design is simply not within the scope

7
Where aesthetics is used “to speak of the organization and management of sensation and perception”

(Rossiter 2007: 166).

Grammars of Process 30

of this thesis (if it is possible at all), I believe that it is important to begin filling in the

“gap” between source code and execution. A process-oriented perspective encourages

this by first defining a given materiality as an assemblage of process. This is as true in the

physical world as it is in the digital, as all that exists has taken its shape as a result of

becoming. From this recognition, this process-oriented perspective integrates the theo­

rization of ontogenesis proposed by Gilbert Simondon. This theory will be described in

further detail in the first chapter. For now, however, it is best to explain that in Simon­

don’s ontogenesis (or, the ‘being of becoming’), change within a system is the result of

incongruency within that system and incongruency is seen as the result of an abundance

of metapotential.

To test this assertion, I survey historical developments within computing as well as

practices of contemporary generative design and typesetting with open source software.

Where do changes—or, in Simondon’s language, transductions—occur within the domain

of computation? How did the assemblages of process upon which generative design

rely become what they are today? The historical survey demonstrates that changes in

computers do arise in response to “differences”—that is to say, problems. These problems

can be ‘real’, ‘virtual’, ‘imaginary’, or otherwise. The solutions to these problems are

influenced by the structure of relations within which the problems themselves arise. This

observation demonstrates that Simondon’s description of ontogenesis is sound and can

be applied in describing the dynamics of change within the metamedium.

The second stage of the process-oriented perspective seeks to interrogate and critique

the mode of existence of a medium within the computer metamedium. When materiality

within the computer is defined as ‘assembled processes,’ media lose their seeming rooted­

ness in material specificities—that is, unless everything assembled within the computer

is deemed a medium. To make this point clear: if a medium is defined by its material

specificities, and within a computer every non-identical digital object contains—or is em­

bedded within—particular specificities, then every unique digital object (or any unique

application used to handle it) has the potential to be labelled a ‘medium’. Variations in

interface, say the difference between Windows Explorer and Mac OS X’s Finder can be

said to hold real, material specificities. Labeling them each as distinct ‘media’, however,

opens an un-closeable box through which every digital process that maintains its own

interface becomes a medium. In my opinion, this is unacceptable.

Theoretical Conditions 31

A separate element, outside of material specificities, must be invoked in order to ex­

plain and discuss media native to the computer. In response to this question I identify

the existence of grammars of process which enable, require, and inspire the assembling of

process. Combined with a sufficiently conservative definition of ‘medium,’ these proces­

sual grammars provide space for discussing the vast variation in material specificities

without diluting the term ‘medium’ into a troubling meaninglessness. While not en­

tirely sufficient to resolve the boundaries of medium and not-medium, this concept of

processual grammar nevertheless provides at least a tool for articulating and guiding

discussions along those lines.

1.5.1 Attributes of Process

Process is reflexive. Its outputs are “feedbacks” of their inputs, reconfigured by their re­

lations to that process. These outputs reconfigure the metapotential in any given system.

The reflexivity of process has material effect. As it reflects the inputs into the outputs,

the outputs in turn reflect new (or else simply different) potentials back into the context

of the reciprocal contact point in which the processes began. This language is extrapola­

tive into any set of intersections. A new configuration of metapotential in any system

results in the reconfiguration of all other connected systems as well.

Processes are organized, set in motion, and interacted with through processual gram­

mars. These grammars represent an organizing logic surrounding processes, a logic that

integrates these processes into distinct process hybridities. In other words, grammars are

the means through which processes are assembled. An obvious example of a processual

grammar is the industrial assembly line: ruled by an organizational logic that hybridizes

processes of craftsmanship, standardized units of measure and time, industrial fabrica­

tion tools, and the logic of commodity, any manufacturing that is to take place within an

assembly line must organize according to the grammar that shapes it.

Generative design is clearly ruled by grammars. Its foundational body consists of

source code, a medium known by its total reliance on grammar for functionality.8 This

thesis focuses on the grammars that enable generative design through investigations into

8
The positioning of source code as a medium is clarified in the discussion of the evolution of programming

interfaces.

Grammars of Process 32

historical processes that resulted in the contexts in which generative designs occur and

into the process itself through a reflexive methodology of generative typsetting around

which I build my case study.

1.6 Generative Design Begins With Words

Generative design is a fruitful site for examining questions of medium specificity and

materiality for a number of reasons. That its materiality is clearly a result of process

is obvious when considering the ‘workspace’ of much of generative design: plain-text

source files. These source files often, though not exclusively, undergo their processing on

a command-line interface (CLI). The CLI is defined by the primacy of text in its workings.

The centrality of text to generative design invites a corrective movement against a gen­

eral overlooking of the processes behind typesetting among new media theory. While the

surfaces of text and textual interfaces have been investigated in numerous ways (Bolter

2001; Fuller 2000), there has been a general lack of theoretical concern regarding the un­

derlying processes of text placement in the metamedium. Likewise, as opposed to the

overflowing amount of literature relating to visually-rich computer interfaces, very little

theory has been written regarding the command-line—despite its place as the historical

interface (once contemporaneous with punch cards) by which digital processes were ini­

tiated. Far from being obsolete, both Microsoft and Apple ship command line interfaces

within their operating systems. In Microsoft’s case, significant money has been spent

developing their modern CLI Powershell. Additionally, Google recently found the com­

mand-line relevant enough to release a CLI tool for interacting with its online services

(Holt and Miller 2010).

This centralization of text and the command-line raises pertinent questions that

may help to clear up the almost-hopelessly fuzzy nature of materiality in the com­

puter metamedium. What aspects define the materiality of the CLI? What are its

medium-specificities? Do existing theories such as remediation apply to the workings

of the CLI?

Furthermore, what processes have assembled in order to form the context of mod­

ern-day CLIs? Such a question delves into the origins of the personal computer and its

perceived significance both before and after its introduction. In Alan Kay’s vision of the

computer as metamedium, the system supports and encourages the instantiation of new

Theoretical Conditions 33

media forms by individuals who have no formal background in programming (Kay 1977).

Apple’s Macintosh famously delivered the vast majority of the human-computer inter­

face innovations used by Kay’s team at Xerox PARC labs—without this key feature of

easy programmability.9 The original Macintosh operating system also presented its total

lack of CLI as an ideal formulation for interfacing with software.10

In stark contrast, when Apple introduced Mac OS X a decade and a half later, its Unix

underpinnings—complete with a CLI—appeared in marketing materials as a selling point.

For almost a decade the adoption of Apple computers has risen continuously. In chapter

two, Mac OS X is described as a particular hybridization of process that both intersects

with and reflects “external” processes such as economics, inertia, and ideology.

1.7 Processes Within the Borderland

The centrality of source code itself—rather than the centrality of the source code as

text—to generative design provides a second compelling reason for investigating ma­

teriality and medium-specificity within the metamedium. Currently at issue within the

emerging field of software studies is where to responsibly place source code in its inves­

tigations. Some propose, as Lev Manovich does in his The Language of New Media, that

understanding the logic of new media requires investigating the field of computer sci­

ence for the “new terms, categories, and operations that characterize media that become

programmable” (Manovich 2001: 48). This is a call to software as logos. It attempts to

solidify theory by giving it a specific direction—the logic and objects of software.

Wendy Hui Kyong Chun, however, questions this direction, criticizing the erasure of

“the vicissitudes of execution and the structures that ensure the coincidence of code and

9
In the video documentary series Triumph of the Nerds, Steve Jobs reports that “they showed me really

three things. But I was so blinded by the first one I didn’t even really see the other two” (PBS 1996).

In his explanation he was so excited about the demonstration of PARC’s GUI that he was unable to ab­

sorb the importance of either the Smalltalk–80 object-oriented programming environment or the Ethernet

networking technology.
10

Despite Apple’s proudly CLI-deficient Macintosh operating system, in 1985 the company found it suffi­

ciently prudent to develop a CLI for use in programming the GUI applications of the Macintosh (Macintosh

Programmer’s Workshop 2010).

Grammars of Process 34

its execution” that results when one elevates source code—and by extension software—as

a totalizing logic (Chun 2008: 303). When theorists such as Alexander Galloway argue

that source code is “automatically executable,” they fetishize source code by collapsing

source code with the effects of that code’s execution. In other words, the execution itself

is erased, along with the conditions buttressing that execution. Rather than approach

a project of solidifying theory (that is, ending “vapor theory” as advocated by figures

such as Peter Lunenfeld, Geert Lovink and Galloway) through reducing the computer

metamedium to the code that it runs, Chun advocates an approach of code as a re-source,

a perspective which “enables us to think in terms of the gap between source and exe­

cution” (321). This gap seemingly includes—or perhaps is—the “borderland” in Hayles

positions materiality, “the connective tissue joining the physical and mental, the artifact

and the user” (Hayles 2004: 72). That Chun identifies the ‘code as re-source’ perspective

as positioning an “interface as a process rather than as a stable thing” resonates with the

process-oriented perspective proposed in this thesis (Chun 2006: 321).

Similarly resonant is the recent series of lectures by David Crockford. While the

series relates to the programming language JavaScript, Crockford utilizes his entire first

lecture to describe the evolution of programming interfaces throughout the development

of digital computers (Crockford 2010a). Starting from the “spaghetti code” of wires that

provided the original means of programming, Crockford proceeds to explain in great

detail the multitude of processes that defined programming prior to its current state.

Integrating these observations with the memoir account of Severo Ornstein allows for

an attempt to fill in historical elements that belong to this gap, or borderlands (Ornstein

2002). The historical evolution of these important sites of interaction between human

and digital processes is seen as an overlooked aspect in both the field of computer science

and in new media discourse. The relevance of inertia in the composition of our current

metapotential is demonstrated by examining the surprisingly large number of elements

that remain a part of computing that have no reason for integration into present-day

processes other than the weight of history.

Chapter 2

Ontogenesis and Generative Design

Dealing as it does with the nature of ‘becoming’ rather than ‘being,’ Gilbert Simon­

don’s theory of ontogenesis provides an ideal framework from which to begin de­

scribing the operation of generative design. Like all digital objects, a generative de­

sign within the computer necessarily involves an assemblage of process common to the

metamedium—electrical current, computer memory, cycles in the central processing unit,

screens, etc. (It is important to note that not all generative design takes place within a

computer, a fact that I return to in my overview of various forms of generative design.)

Unlike most other digital design practices, however, generative design involves writ­

ing source code. Source code is a medium of great variability in its processual gram­

mars. There are literally thousands of programming languages out there, each present­

ing a process hybridity assembled under a specific organizing logic. The medium itself

satisfies an urge for immediacy by striving for an ever-increasing fluidity in expressing

the intentions of the programmer. One of the significant traits of this medium is that

the processes developed within it are abstract expressions of intent that require a spe­

cific stage of translation in order to realize that intent. (This stage of translation exists

for both software and “code works,” the latter being translated by a mind rather than a

compiler or interpreter.) This triple-materiality—as programmer intention, abstract rep­
resentation, and executable object—of source code-native processes naturally invokes the

requirement of a framework that describes becoming.

2.1 The Transduction of Source Code

In his text “The Position of the Problem of Ontogenesis,” Simondon writes,

By transduction we mean an operation–physical, biological, mental, so­

cial–by which an activity propagates itself from one element to the next,

within a given domain, and founds this propagation on a structuration of

Grammars of Process 36

the domain that is realized from place to place: each area of the consti­

tuted structure serves as the principle and the model for the next area, as

a primer for its constitution, to the extent that the modification expands

progressively at the same time as the structuring operation. (Simondon

2009: 11).

Repurposed from the language of chemistry and microbiology, Simondon’s word

choice provides a visual metaphor of transduction through the example of a sub­

strate—swelling with metapotential—that crystallizes. The final formation is the substrate

fulfilling this metapotential, a fulfillment that arises only through an unpredictable un­

folding involving emergent factors.11

The model of Simondon’s ontogenesis is built around the question of individuation,

a historically debated topic within philosophy. Rather than focusing on the problematic

of being, as the question of individuation was typically phrased in the West, Simon­

don provides the much more useful observation that individuation is rather a process

of becoming. His philosophy has only recently been translated into English, a fact that

demonstrates his notion of transduction: the translation reconfigures the space of Eng­

lish-based theory through its structural integration into theoretical frameworks, which

in turn modify the landscape in which new theory occurs.

This example of translation-as-transduction applies equally to source-based processes,

wherein the process of translation represented by code compilation/interpretation re­

sults in an executable object that modifies the computer metamedium by altering its

state of metapotential. As with theory, to what degree this alteration occurs depends on

the utility and dissemination/adoption of the software.

2.1.1 Elements of Ontogenesis

Simondon’s ontogenesis relies on several key concepts. The first is the idea of a

metastable equilibrium. The lack of understanding of a metastable equilibrium, Simon­

don claims, is the reason why individuation has “not been able to be adequately thought

out” (2009: 6). Prior to the scientific formulation of a metastable equilibrium defined by

multiple energy states and transitions between these states, the concept of equilibrium

11
The language of chemistry was likewise appropriated for the term ‘interface’ (Cramer and Fuller 2008: 149).

Ontogenesis and Generative Design 37

was tied to stability. A stable equilibrium cannot host ‘becoming’ because it is “the equi­

librium that is reached in a system when all of the possible transformations have been

realized and no more force exists” (Simondon 2009: 6). Simondon’s individuation is the

result of a resolution of a metastable system, following the logic of the crystallization of

substrates—the substrate is a metastable equilibrium that undergoes transformation as a

result of its own composition.

The second, especially valid for the domain of generative design and—specifi­

cally—the workflow of this thesis, is the concept of the preindividual. The preindividual

regime is “more than unity, and more than identity” (6; original emphasis). Simondon

articulates this, as is his fashion, by referring to the as-yet scientifically incompatible dy­

namics of quantum and wave mechanics, both of which articulate specific realities about

photons but neither of which explain the reality of the photon. Simondon proposes that

they can be considered “two manners of expressing the preindividual” (7; original em­

phasis). This concept of preindividuality certainly relates to the dynamics engendered

by converting “pre-formats” into output formats, such as is done in the construction of

this thesis. When Simondon speaks of a preindividual nature that “is a source for future

metastable states from which new individuations can emerge,” he could easily be refer­

ring to the Markdown source format I am using—Markdown could just easily become an

OpenOffice.org document as an HTML file (8). I will return to this when I discuss the

specificities of my workflow.

The final concept is that of transduction, the definition of which I already presented

in relation to source code. There are several additional attributes to consider. First is its

position as a totalizing expression of ontogenesis:

Transduction corresponds to this existence of relations that are born when

the preindividual being individuates itself; it expresses individuation and

allows it to be thought; it is therefore a notion that is both metaphysical

and logical. It applies to ontogenesis, and is ontogenesis itself. (Simondon

2009: 11)

Second is the recognition that transductions are the result of incompatibilities within
the preindividual state. These incompatibilities are not ‘negative’ in the sense of the di­

alectic—rather, they are “the other side of the richness in potential” (11). Transduction

is the mechanism through which structuration occurs within problem domains. As Si­

Grammars of Process 38

mondon has explained that transduction is ontogenesis, it can be understood that within

this framework all becoming is the result of problems arising through the existence of

potential within metastability.

The resolution of the problem diverges from the forms of deduction, induction, and

dialectic. It differs from deduction in that “it extracts the resolving structure from the

tensions of the domain themselves” rather than looking outside the domain for resolution

(12). Like induction all the terms within the domain are maintained. However, induction

seeks only the commonalities between these terms. Transduction, on the contrary, is

characterized by its losslessness: “each of the terms of the domain can come to order

itself without loss, without reduction, in the newly discovered structures” (12). And,

while it may resemble dialectic in its resolution of opposition, there is no presupposition

of a prior time because “time comes out of the preindividual just like the other dimensions
according to which individuation occurs” (12; original emphasis).

It is this mechanism of problem-resolution that provides a means of testing Simon­

don’s theory against the backdrop of the computer history that converges today to form

the backdrop of generative design. The reflexive generation of the thesis itself provides

a focused environment of becoming that likewise enables an examination of this artic­

ulation of ontogenesis. I will begin, however, by applying this mechanism to several of

the forms of generative design.

2.2 Examples of Generative Design

2.2.1 Information Visualization

Information visualization, or ‘infovis’, is perhaps the highest profile form of generative

design. Infovis involves taking raw datasets and writing code that is taylored to display­

ing that data in a visually rich manner that aims to facilitate the understanding of the

data. Projects such as the Washington Post’s two-year investigation “Top-Secret Amer­

ica” demonstrate the effectiveness of infovis (Priest and Arkin 2010). By articulating raw

data of Defense Department spending through generative visualization, the viewer is

able to absorb enormous data sets through interactive visualizations of industry-agency

connections and a map of government and company work locations.

Ontogenesis and Generative Design 39

Infovis clearly emerges from the problem domain of data absorption. It is a hybridiza­

tion of previous developments in statistical visualizations such as graphs with the inter­

activity and programmability of the computer. The existing statistical representation

methods grew out of a need for displaying discrete items—data points—in a continuous

way. These techniques of representation can be seen as a true remediation (from num­

ber to line), driven by the call for immediacy. Infovis extends this impulse through its

hybridization of programmability and interactivity in response to increasingly complex

forms of information.

Infovis thus emerges from a problem domain. It preserves the terms of its preindi­

viduated state—the remediation of data into visually decodable information, the urge for

immediacy, and the existence of a programmable, interactive metamedium—as it emerges

into the new reconfiguration that houses its individuated existence. The techniques of

infovis are continuously evolving as new methods are tried, where previous techniques

serve as “the principle and the model” for the techniques that are developed next. Infovis

thus seems to follow the rules of Simondon’s ontogenesis.

2.2.2 Generative Computer Demos

Though an under-studied phenomenon in the field of new media studies, the “demoscene”

extends back to the very first personal computers. Not long after the introduction of the

personal computer was the introduction of pirated software. This software often required

‘cracks’ in order to bypass mechanisms developed by the software industry to protect

their products. Groups of individuals would dedicate themselves to working around

the copy-protection schemes in a competitive manner—it mattered to these people that

they would “release” first. Demos arose as a means of distinguishing these groups from

one another—they would play either when a user ran the crack program to unlock the

copy-protection, or alternatively they might play as the now-unlocked program loaded.

Due to the constraints of these early computers, generative techniques were devel­

oped that resulted in, for instance, constantly morphing backgrounds or endlessly run­

ning visualizations. Visual objects could be generated and manipulated through coded

algorithms rather than presented through the size-intensive bitmap formats of early im­

ages. Over time the demoscene became its own genre of artistic practice, having sepa­

rated from the pirated software “warez” scene quite some time ago.

Grammars of Process 40

Demos arose in the problem domain of identifying which group of software pirates

had cracked an illegally obtained program. The terms of the preindividuated space—con­

strained but graphically capable computational capacity and competitive dynamics be­

tween groups—are carried over with the individuation of the demo-making practice. The

competitive nature of the scene means that advancements made in an individual demo

inspire other groups to “do it better,” displaying the characteristics of a transduction

wherein modulations occur at the same time as structuration.

It is also important to note that the individuation of any demo emerges under an

interplay with constraint. Demos consistently push against the edges of possibility, both

of the hardware on which it runs as well as scene-specific constraints on form such as

extreme limits on file size such as 4- or 64-kilobytes per demo in the ‘Intro’ category, a

formal holdover from the early days of associating with piracy and fitting demos into

extra space left on floppy disks (Demo 2010).

2.2.3 Generative Efficiency

For workflows of a certain size and complexity, generative design can become a matter

of efficiency. Florian Cramer gives the example of Dutch designer Pietr van Blokland,

house designer of Rabobank. Faced with the task of producing brochures in 32 different

languages, van Blokland has “thrown away” Adobe and WYSIWYG design in his studio

in favor of a generative workflow (Cramer, Mansoux, and Murtaugh 2010).

The problem domain in van Blokland’s case is feasibility. With a WYSIWYG work­

flow, every difference in language and output (brochure, letter, website, etc) must be

accomodated by hand do to its basis within the GUI. A generative workflow, however,

enables a flexibility of form that drastically reduces the manual labor required for ad­

dressing these differences. The original term—individual documents must appear in 32

languages—remains though the landscape of van Blokland’s workflow has reconfigured

around a generative design that makes such an objective tenable.

Another example of this is the TEX macro package ConTEXt which I use in my case

study. This package is developed by Hans Hagen of Pragma ADE,12 a Dutch publisher

12
ADE stands for ‘Advanced Document Engineering’.

Ontogenesis and Generative Design 41

of learning materials for corporate clients and, eventually, textbooks. Generative type­

setting through TEX proved the ideal solution for enabling a workflow that was flexi­

ble enough to handle complex math, at which point Hagen began experimenting with

various commercial TEX packages (Hagen 2006). Constraints within those packages led

to heavy modification which eventually became so extensive that Hagen realized he

had effectively written a new macro package. In his words, “[w]riting the macros took

time, but we could update documents and (progress) reports so quickly that it paid off.

We could offer authors high quality output immediately” (Hagen 2006). The original

term—high quality document design flexible enough to produce multiple outputs from a

single source—remains inside ConTEXt to this day.

2.2.4 Extrapolative Generativity

An emergent form of generative design relies on remediating processual grammars of

generativity from the computer into the physical world. One such example of this is

the work “Placement/Displacement” by Edo Paulus and Luna Maurer “in which people

simulate the logic of computers” (Paulus and Maurer 2005). Utilizing the familier ‘if/then’

grammar of procedural programming, an algorithm is constructed by which people seat

themselves according to the gender and relative heights of their neighbors: “IF both of

your neighbors are of the same gender as you/THEN move to the closest free seat on

another row/IF the person in front of you is taller than you/THEN move to the closest

free seat in your current row/REPEAT.”

This movement from one medium into another demonstrates the fluidity with which

some processual grammars migrate. The audience participating in the piece undergo

a collective individuation as they “process” the algorithm, modifying and structuring

simultaneously.

2.3 Transindividuation: The Relevance of Ontogenesis

The applicability of ontogenesis, transduction, and individuation has been demonstrated

for generative design. However, this is only a part of the relevance of that theory here.

A theory as broad-reaching and general as ontogenesis must, if it is applicable at all, find

applicability in a great deal of places. The purpose of using this theoretical framework

Grammars of Process 42

is not simply to show its validity or to provide a suitable means for describing the dy­

namics of generative design. Rather, the utilization of ontogenesis allows us a means of

articulating the opportunity for a collective becoming based on the individuation of free

software.

Simondon addresses the idea of collective becoming through his concept of the

transindividual. He writes,

Individuation in the form of the collective turns the individual into a

group individual, linked to the group by the preindividual reality that it

carries inside itself and that, when united with the preindividual realities

of other individuals, individuates itself into a collective unity. Both indi­

viduations, the psychic and the collective, are reciprocal to one another;

they allow for the definition of a category of the transindividual, which

can be used to explain the systematic unity of the interior (psychic) in­

dividuation and the exterior (collective) individuation. (Simondon 2009:

8).

FLoSS software is a transindividuated entity, “living” in the sense that “its becoming

is a permanent individuation, or rather, a series of outbreaks of individuation advancing

from one metastability to another” (Simondon 2009: 8). Yet, again, this theory is prob­

ably applicable in a vast array of situations. For example, proprietary software can be

described in the same way. The crucial difference lies in the distribution of agency across
the metastability as the “permanent individuation” unfolds. In the case of FLoSS, we have

the potential to restructure constraints following organizational logics which distribute

agency in a reciprocal way. This line of thought will be picked up again at the end of the

next chapter. First, however, we will begin with a historical overview of the evolution

of operating systems.

Chapter 3

Operating Systems

3.1 Alan Kay and a ‘Metamedium’ Vision for Personal Computing

In his text Software Takes Command, it is Manovich’s inclination to focus on the work of

Alan Kay at Xerox PARC when discussing the development of cultural software. He notes

that there are multiple potential entry points for consideration: the work of Douglas

Englebart and his team, the development of the LINC computer at the MIT’s Lincoln Lab,

and Donald Sutherland’s SketchPad. The development of the Xerox Dynabook, however,

is unique in multiple ways. First and foremost is the architecture of the software: by

developing and employing an object-oriented approach to software design, users were

positioned as inventors of new media through their ability to design their own interfaces

that both enabled and spurred new modes of creation native to the screen. These screenic

modes of creation represented a new, vital dimension to computing—the willful, shaping
into existence through design and implementation of new digital processes. Kay’s team

was specifically dedicated to applying intersections between education and computation.

In the process of teaching the system to children and adults alike, those they taught

often ended up developing their own unique applications out of the objects that could

be shared between applications as well as extended through the inheritance model of

object-oriented programming.

Cultural software—and the cultural computing which it facilitates—is defined by

Manovich as software that is “directly used by hundreds of millions of people” and that

“carries ‘atoms’ of culture (media and information, as well as human interactions around

these media and information)” (2008: 3). Alan Kay is a pioneer figure in the computing

world, an individual who not only theoretically formulated a vision of the computer as a

‘metamedium’ but also did a great deal of practical work in order to achieve this vision.

Unfortunately, as is all too common in the lives of visionaries, key elements of Kay’s

ideal never breached into the mainstream even as other aspects were appropriated and

commodified wholesale by Apple and Microsoft.

Grammars of Process 44

The first, and most important, element of Kay’s original platform that failed to trans­

fer from his ideal ‘Dynabook’ personal computing platform to the commercial GUI-drive

operating systems that now define the landscape of cultural software is the concept of

easy programmability. In order to facilitate this, Kay founded the basis of all the Xe­

rox PARC work in personal computing on a programming language called Smalltalk. In

his text “The Early History of Smalltalk,” he explains that the computer science work

of the 1960s began to look like “almost a new thing” as the funding of the United States’

Advanced Research Projects Agency (ARPA) led to the development of techniques of “hu­

man-computer symbiosis” that include screens and pointing devices (Kay 1993). Kay’s

focus became investigating what, from this standpoint of “almost a new thing,” what the

“actual ‘new things’ might be.” Any shift from room-size, mainframe computers to some­

thing suitable for personal use presented new requirements of “large scope, reduction in

complexity, and end-user literacy” that “would require that data and control structures

be done away with in favor of a more biological scheme of protected universal cells in­

teracting only through messages that could mimic any desired behavior” (Kay 1993).

To this end, Kay and other members of the PARC team developed this Smalltalk lan­

guage to facilitate a “qualitative shift in belief structures—a new Kuhnian paradigm in

the same spirit as the invention of the printing press” (Kay 1993). The technical details of

Smalltalk are indeed impressive to those who can read and understand them: Smalltalk

is object-oriented, dynamically typed,13 and reflective (Smalltalk 2010). All three of these

approaches have found increasing adoption in computer programming languages. For

instance, Yukhiro Matzumoto’s popular language Ruby offers all three of these character­

istics. That the processual grammar—that is, the organizing logic—of Smalltalk continues

to influence language design today is only one example of how Kay’s particular formula­

tion of the computer metamedium continues to hold influence today. However, the lack

of easy programming tools on both the original Macintosh platform and early Windows

machines seem to have led to a conception of the personal computer far-removed from

Kay’s vision of the metamedium as a site of conversation between humans and computers

(Kay and Goldberg 1977). In other words, the heavily “productized” nature of Macintosh

13
For the sake of reference, the idea of dynamic typing has been controversial among programming language

designers from the conditions of the computer science field circa the implementation of Smalltalk in the

1970s until this very day.

Operating Systems 45

and Windows software, in which everything was packaged and proscribed ahead of time

by people other than the one using the computer, has resulted in a vastly different dis­

tribution of agency than what would exist if Kay’s vision had been realized in either or

both of those platforms. Contrary to this vision, computers are by and large not seen as

sites for experimentation so much as spaces for the accomplishing of pre-defined tasks

using pre-defined software.

The Dynabook also represents a clear processual grammar, one that defines the

metamedium of computers as an assemblage of processes that incorporates hardware, an

operating system, and a capacity for programming. While the pedagogical component

of his work—that programming should be accessible to non-professionals—is somewhat

missing from current instantiations of the Dynabook’s organizing logic is alleviated to

some extent that the three major platforms—Windows, Mac OS X, and GNU/Linux—ei­

ther ship with or provide downloads for programming tools.

The processual grammars of the GUIs developed at Xerox PARC have likewise been

hybridized and extended within the assemblages of modern operating systems. The orig­

inal individuation of the GUI as a distinct medium has resulted in a specific modication

and structuring of the human-computer metastability. It was not even required that the

systems at Xerox PARC were commercially successful—their individuation resulted in

transduction across the system due to the potency of the interface’s metaphors. The or­

ganizational logic of windows and cursors has been embraced by every GUI up until the

advent of small, touch-screen capable smartphones.

The individuation of the Dynabook retains key conditions from its preindividuated

landscape. The impulse towards immediacy is obviously retained. Interface elements

such as windows and mice had already developed prior to the Dynabook in systems

such as those developed by Douglas Englebart or the LINC computer that emerged from

Lincoln Labs. Severo Ornstein, who worked on the LINC prior to moving to a position

at PARC, comments, “In many ways, the Alto was also a descendent of the LINC, but of

course in much more modern dress—so much so that the quantitative changes resulted

in qualitatively different user capabilities” (220). Ornstein’s observation demonstrates

perfectly the carry-over of terms that, when reconfigured, produce a significantly altered

potential. The processual grammar embodied by the Dynabook (and its cousin the Alto)

has since moved on to modify and structure the entire metastability of computation.

Grammars of Process 46

3.2 The Evolving Nature of Operating Systems

The original operating system of the computer could perhaps be said to be human, in that

the computer was once attended by people known as ‘operators’ whose responsibility

it was to load programs into the machine and to maintain it in working order. These

operators were an element in an organizational grammar called batch computing. Batch

computing was driven by a logic of maximizing computer time, which was at this point

quite an expensive commodity. The operators also served to insulate the machine from

any accidents, such as a spilled cup of coffee, that might damage the computer and result

in expensive downtime.

Batch computing had serious ramifications on programmer time, however. Batch

processing involved queuing programs in a linear order. Each program ran one at a time,

and if the program failed—as many do—the programmer would have to return in to the

back of the line once the problem had been debugged. Batch, then, represents a particular

processual grammar that elevated computer time as a priority over human time. It is a

distinct result of particular processes, from organizational tendencies toward hierarchies

and division of labor to technological and manufacturing constraints that resulted in a

high cost for computing time.

Inevitably, however, batch computing would face a challenging logic. The priori­

tization of machine time over programmer time is clearly pregnant with conflict. The

programmer, who could possibly know exactly what went wrong with a failing program

and how to fix it within minutes, would have to wait hours, minutes, or even days before

being able to run the modified version. If there were another bug, the process would be

repeated. This led to large debugging cycles even for relatively minor problems (Ornstein

2002: 40–41).

The processual grammar that developed in response to this conflict within the

metastability of early computing was time sharing. Time sharing first began simply by

allowing programmers to operate the machine themselves and to continually modify

their program and test it during the debugging process. Initially this practice was found

only on the margins of computing, in specialized research labs that had the resources

to allow this kind of intimate programmer-computer interaction. However, economic,

technological, and social processes continued to evolve: social adoption of computers

was increasing as more and more problem domains turned to “computerization” for so­

Operating Systems 47

lutions, driving economic processes to invest in the development of new and improved

technological developments that in turn drove down the cost of new computers, lowering

the barrier for adoption into new problem domains, and so forth. This dynamic eventu­

ally led to the development of operating systems—and programmer interfaces—designed

to facilitate the contemporaneous utilization of a given machine by multiple individuals

at the same time.

Even after this transition to hardware, the operating system of a computer was in­

timately tied to its hardware. The result was a proliferation of platforms and a stagger­

ingly complex ecosystem of effort duplication as computerized processes were written

over and over again in the processual grammars specific to each platform. It was the de­

velopment and dissemination of Unix by software engineering luminaries Ken Thompson

and Dennis Ritchie that sparked the ontogenesis of operating systems as a “hardware in­

dependent” process, enabling cross-platform code as a dimension in the software process.

While operating systems had been previously developed to abstract the system to some

extent, for instance to hold segments of code for handling routine tasks (incidentally,

these segments of code are often called ‘code routines’) such that they need not be input

every time that operation is to be performed, the introduction of Unix accelerated this

process of abstraction.

In 1999, more than twenty years after this milestone in abstraction, speculative fiction

writer and trained programmer Neal Stephenson released a novella-length essay entitled

“In the Beginning, Was the Command Line” (Stephenson 1999). This essay delivers an

analysis of (consumer) operating systems and a critique of the reign of the GUI. By means

of distinguishing the cultures and manifestations of the operating systems—Microsoft’s

Windows, Apple’s original Mac OS, Be’s BeOS, and GNU/Linux—Stephenson offers cars

as analogy. Mac OS becomes an expensive European car, streamlined but expensive to

maintain. Windows becomes a station wagon, the un-sexy, utility-oriented choice of the

masses. The (now-defunct) BeOS is a Batmobile. And GNU/Linux is a tank without a

price tag.

Computer programmer Garrett Birkel, writing in an update/response to Stephenson

in 2004, notes the extreme pace of evolution of computer hardware. Despite the expand­

ing set of elements contained within a personal computer “we don’t call our new Dell

machine a ‘computing collective’. We consider it one device, with a singular name. And

Grammars of Process 48

our concept of an ‘Operating System’ has evolved right along, neatly obscuring this com­

plexity” (Birkel 2004). This leads Birkel to clarify that what Stephenson’s text concerns

itself is not so much the distinctions and separations between hardware and software as

the mode of interactions with which we engage information:

The crucial separation here is not between the computer (hardware) and

the Operating System (software). Those are so deeply integrated these

days that they have effectively merged into the same beast. The crucial

division is between ourselves, and our information. And how that divi­

sion is elucidated by the computer, with hardware and software working

in tandem, really determines how useful the computer is to us. In other

words, it’s all about User Interface, and even though "In the Beginning,

There Was the Command Line", it’s also true that In The Beginning, Infor­

mation Took Fewer Forms. (Birkel 2004)

The operating system is the initial site of formation for the processes that define this

division between “ourselves” and “our information,” but it is far from the end of story,

and perhaps far from the most influential. I will return to Stephenson and Birkel in

the next chapter during the discussion of the command line and the evolution of pro­

grammer interfaces. At this point, there is no true means of separating hardware from

software—without an operating system, there is no means for hardware to access much

of its own functionality. The materiality, then, of a personal computer is inherently tied

to a processual grammar that hybridizes hardware and operating system—without an

OS, the PC is not a metamedium—it is dead weight.

3.2.1 Unix as a Processual Grammar

The aforementioned capacity of Unix to migrate across hardware while maintaining a

consistent interface to both users and programmers has been criticized as well as lauded,

for example in the UNIX-HATER´s Handbook wherein the authors liken it to “a computer

virus with a user interface” (Garfinkel, Weiss, and Strassman 1994: 4). The author’s com­

plain that the portability of Unix results from an under-designed infrastructure, which

they call incoherent. The virus metaphor works, for them, because of this portability, the

ability to “commandeer the resources of hosts,” and Unix’s capacity for rapid mutation

(Garfinkel, Weiss, and Strassman 1994: 4).

Operating Systems 49

This capacity for rapid mutation is evidence of Unix’s evolutionary superiority over

other operating systems, which the UNIX-HATERS note is not concomitant with tech­
nical superiority and, they assert, in the case of Unix the balance is far too the side of

evolution over technical soundness (6). Unix, then, could be considered a successful

hybrid from the standpoint of Lev Manovich’s evolutionary metaphor. By hybridizing

the grammar of hardware independence with processes of time sharing and source code

distribution, Unix successfully individuated across the metastability of the computer in­

dustry. But these processes that were hybridized behind the processual grammar of Unix

are not necessarily media in any traditional sense, leaving Manovich’s explanation that

successful hybrids are constructed from the “genes” of media an incomplete articulation

of what in reality unfolded. Important parts of the genetic structure of Unix are its root

in source code sharing and its impulse towards organizational and logical compatibility

across vastly variant hardware configurations. These aspects related to constraints that

could be more closely described as grammatical or ‘material’ aspects of the computer

metamedium as it individuated in—and transducted across—the conditions of the past 7

decades.

From its initial existence as a system shared freely in code across research institutions

and corporate labs to its fractured existence as inconsistently implemented proprietary

offerings during the “Unix Wars” to its resurgence as free (GNU/Linux) and open source

(Free/Open/Net/etc-BSD) software, Unix exemplifies the concept of processual grammar.

As the success of GNU and the Linux kernel imply, it is possible to develop systems that

follow this processual grammar without incorporating any of the source code found in

Thompson and Ritchie’s original release. The standardization of a Unix specification in

light of increasing incompatibility between industry implementations demonstrates how

grammars of process facilitate and organize processes: as the implementations diverged

into incompatible versions of the organizing logic, processes could no longer be easily

shared between platforms. Only a return to a shared grammar offered reprieve from

this damaging fragmentation. As open source luminary Eric S. Raymond writes in The
Art of Unix Programming, “The largest-scale pattern in the history of Unix is this: when

and where Unix has adhered most closely to open-source practices, it has prospered.

Attempts to proprietize it have invariably resulted in stagnation and decline” (Raymond

2003).

Grammars of Process 50

Figure 1 Individuation of the Unix processual grammar over time. Image provided by WikiMedia.

Unix preserves the original terms of its preindividuated state as it solves the problem

of fragmentation that resulted from a proliferation of incompatible operating systems:

the CLI, the logic of time-sharing and code sharing, and a desired capacity for writing

machine-independent programs. The metastability after its individuation is irrevocably

changed (much to the chagrin of the UNIX-HATERs) as the processual grammar of Unix

propagates throughout the computer industry. When system interoperability again be­

came a problem due to proprietary deviations from the original Unix grammar, a process

of standardization was undertaken in order to resolve the issue.

Another effect of the “proprietization” of Unix was the introduction of a replacement

version of Unix emerging from from Richard Stallman’s ideo-ontological premise for

software. Stallman’s free software has completely rearranged the metastability of operat­

ing systems. Though his GNU (GNU’s Not Unix) operating system project is, as a whole,

unfinished after more than two decades of development, the environment surrounding

that effort—the GNU compilers, the libraries of code upon which they depend, and a vast

array of available commands and applications—provides a highly active and comprehen­

sive ensemble of metapotential from which one can extract whatever processes are use­

Operating Systems 51

ful for one’s own ends (provided one follows the rules of the code’s licensing terms, the

GNU Public License (GPL)). As a result, GNU code appears in not only virtually every

non-proprietary platform, it also ships with, and provides important underpinnings to,

that proprietary flagship of the designing class: Mac OS X.

3.2.2 Mac OS X: Process Hybridity in Action

As the Apple platform has long been the preferred environment for professional design­

ers—since before OS X’s first release in 2001—is an important object of study. The ar­

chitecture of its current operating system allows us to investigate the concept of process
hybridity. Mac OS X is a multi-layered system that contains both open and closed source

elements with distinct historical lineages. As an assemblage, it can be represented as

containing a high degree of process hybridity as it combines not only various separate

projects into unified commodity,it also bridges ideological boundaries by combining pro­

prietary, open, and free code into a single commercial object.

This hybridity reaches into the very core of OS X, into the kernel itself. The kernel

of an operating system handles the specific task of delivering the instructions deriving

from software to the specific pieces of hardware that pertain to those intructions. A

simplistic analogy can be made to a traffic cop, whose role it is to direct traffic in a way

that the competing interests at an intersection proceed in an orderly fashion. Kernels

come in two flavors: the monolithic kernel and the microkernel. The distinction between

the two resides in the size of the tasks they are expected to perform, as well as a material

distinction between where operating system code should be executed (kernel memory or

user memory) (Kernel (computing) 2010).

Without entering into a lengthy discussion of the exact differences between the

two—a discussion that has sparked a great degree of vitriol between their respective

advocates—let us note that a monolithic kernel contains the code for everything from

networking to video display drivers to encryption mechanisms. A microkernel, on the

other hand, delegates these processes to servers that run outside of the kernel’s memory

space in the user memory (or userland, as it is often called). The result is that there is a

great deal less chance of crashing a system that runs on a microkernel, as a bug in user

space cannot affect the operation of the hardware whereas a bug in kernel space neces­

sarily can. Microkernel’s are also much more modular, as servers can be replaced with

Grammars of Process 52

(theoretic) ease due to the fact that it sits outside the kernel’s code. OS X’s kernel, how­

ever, is a hybridization of the monolithic and microkernel designs (XNU 2010). Due to

speed concerns, it was decided that elements of the FreeBSD project’s monolithic kernel

would be welded onto the Mach microkernel.

Figure 2 The architecture of Mac OS X. Note the hybridization of BSD and Mach within the kernel section

of the diagram. Image courtesy of WikiMedia.

Moving up from the kernel we encounter the system utilities. These are directly imported

from BSD Unix, specifically FreeBSD. This is the last layer of what constitutes the “core

OS”, which is released under an open-source license. It must be noted, however, that a

Operating Systems 53

majority of code within this part of the operating system was licensed under terms that

allow Apple to withhold any and all code whatsoever (i.e. open source licenses such as

BSD or MIT). A major exception to this is the GNU C Compiler (GCC) and its attendant

libraries, which are free (as in freedom) software and is licensed under terms that force

Apple to make available the code of their modifications whenever they publicly release

new binaries of their version of the GCC. On the other hand, specific improvements to

BSD-licensed code is available only at Apple’s whim. It is impossible to monitor whether

the source code they make available represents all the improvements they have made or

whether they have been selective with their source in order to maintain a proprietary

advantage.

Above the core OS level we find further evidence of OS X’s storied history. The roots

of Mac OS X reside in the operating system NeXTSTEP, developed at Steve Jobs’ NeXT,

Inc. after he left Apple in 1985. Like all GUI-based operating systems, NeXTSTEP nec­

essarily incorporates a large number of metaphors developed first at Xerox PARC. In

addition, however, it was built from the ground up to be easier to develop applications

for than other operating systems at the time. To this end the Objective-C language, ob­

ject-oriented and heavily influenced by Smalltalk, was adopted. While certain systems

(such as the microkernel) might be written in C, applications were developed in Objec­

tive-C and all the servers above the kernel spoke exclusively with applications in this

language. The programming environment was also a leap forward in ease of use: GUI

windows could be designed in a WYSIWYG fashion, where their component widgets

(buttons, menus, etc) could be easily tied to blocks of code which would inform the com­

puter what was to be done upon a given widget interaction. NeXTSTEP thus represented

somewhat of a resurgance for Alan Kay’s original vision of personal computing. How­

ever, NeXT’s first computers were priced at $9,999 dollars—resulting in slow adoption

outside of academic or institutional contexts.14

Three other hybridities occur within this top level of Mac OS X: Carbon, Classic,

and Java (the programming environment of NeXTSTEP was renamed Cocoa in OS X).

Carbon was developed as a new way of writing Macintosh applications that would allow

developers an easier transition path from Mac OS Classic to OS X. Applications written

14
It was within such a context that Tim Berners-Lee developed the first web browser, WorldWideWeb, on a

NeXT computer.

Grammars of Process 54

for Carbon could run on both the older Mac OS as well as OS X, allowing companies

like Adobe to refashion their code without changing programming languages. Classic

was an emulation layer that allowed “non-Carbonized” Mac applications to run on OS X

(this hybridity has been removed since Apple’s transition to Intel microprocessors). Java

is a programming language and environment designed to allow universal execution of

programs regardless of underlying architectures: if Java has been ported to an OS, then

theoretically any Java program can then be run on that OS15.

The top layer is Aqua, a “lickable interface” that also extends an aspect of NeXTSTEP:

the hybridization of print-oriented grammars into display technology. In the case of

NeXTSTEP, the relatively early programming language for printing PostScript was fused

into Display PostScript (Display PostScript 2010). In Mac OS X, PostScript’s evolutionary

successor PDF is integrated into the Quartz rendering system. Quartz itself is an exam­

ple of a generative process in that “[e]ach context rasterizes the drawing at the desired

resolution without altering the data that defines the drawing” (Quartz 2D 2010). This ab­

straction of what is to be rendered from what is rendering it allows for output potentials

in various formats such as bitmap and PDF (Apple 2010). It provides a seamless tran­

sition to printing as well. It’s modularized approach no doubt eased the introduction

of GPU (Graphics Processing Unit) acceleration into the rendering pipeline (Quartz 2D
2010, Apple 2010).

The hybridities present in Mac OS X have material effects from the execution of code

to the variability of its cultural enablement. It allows for a vast assortment of applications

from various lineages and paradigms to coexist and interoperate within a single oper­

ating system context. Short of labeling each of these hybridized elements a “medium,”

there is currently no proposed language within new media for articulating the hybridity

of the ensemble as a whole. In this fashion, process hybridity provides a mechanism with

which we can describe the facets of OS X.

Mac OS X hybridizes not only material processes (code, hardware) but also ideolog­

ical processes (licensing terms). It’s success is a function of economic (the backing of a

15
However, there are many different versions of Java, making this ideal of “write once, run everywhere”

somewhat problematic. Microsoft was even successfully sued for trying to hijack the language by lever­

aging an incompatible implementation through the near-monopoly of its Visual Studio development en­

vironment.

Operating Systems 55

large firm) as well as cultural processes (Apple’s ability to mass-produce computers is a

function of their position as the introducers of the first commercially successful personal

computer). This allows OS X its status as the only successful, commercial UNIX on the

desktop as well as its status as an easy-to-use, GUI-driven development platform. This

development platform is based on Objective-C, a language which hybridizes the gram­

mars of C and Smalltalk. Thus the hybridization of process that constitutes Mac OS X

incorporates even more closely the processual grammar of Alan Kay’s Dynabook.

Furthermore, OS X provides an interesting observation of the dynamics of one of the

key elements of Marshall McLuhan’s Tetrad: when the medium of the GUI, exemplified

by the original, “no command-line” classical Macintosh operating system, is pushed to

its limits, it apparently reverts—in this case at least—to hosting a CLI. The reverse case

seems to be true for the CLI, which when pushed to its most extreme becomes host to

GUIs that in turn embed the CLI through programs known as ‘terminal emulators.’

3.3 Individual Operating Systems Are Processual Grammars

A media theory based on either specificities or effects would likely characterize individ­

ual operating systems as separate media. Certainly there is great “material” variance

(and thus variance of effect) from a user interaction point of view between various oper­

ating systems. However, a close examination of these specificities implies that beneath

the variation in interface lie common processes—it is the logic of their organization that

varies. File manipulations, drawing to the screen, and the multitasking of multiple appli­

cations at once (to name but a few) are processes common to all modern operating sys­

tems. While implementation and organization differ between individual systems, from

a process-oriented perspective there is only one medium involved: the medium of the

operating system. In other words, grammatic specificities do not imply the emergence

of a new medium. To argue otherwise leads us to the trap of labelling each iteration of

software that changes its interface a separate medium. It is not the surface of a system
that determines its ‘medium-ness’.

3.4 Why free software?

There are multiple points of consideration that lead me to concentrate on free software.

The first is its relative lack of presence within new media circles. Time and again I arrive

Grammars of Process 56

at a conference only to see a room full of computers booted into proprietary operat­

ing systems. While I am not a ‘zealot’ who disavows any potential use of proprietary

software, I find the general population of new media’s reliance on proprietary operat­

ing systems—chiefly, by way of personal and anecdotal evidence, Mac OS X—disturbing.

Hans Magnus Enzensberger outlined in his “Constituents of a Theory of the Media” the

importance of issues of control with relation to mediums. Let us move through the jux­

taposed elements of repressive versus emancipatory uses of media which Enzensberger

provides and interrogate them in relation to Mac OS X and GNU/Linux (Enzensberger

1970: 269):

3.4.1 Attributes of Repressive versus Emancipatory Media

Centrally controlled program vs. Decentralized program

This question is answered by asking the question: “Where is the source code of the

operating system?” In the case of OS X, the source code resides only within the

confines of Apple’s corporate computers. It is likely heavily guarded by multiple

mechanisms. Whereas in the case of GNU/Linux, the operating system source

code is spread across dozens of mirrors on the Internet as well as the computers

of programmers and users around the world. Each of these copies can be readily

modified to the designs of any given user, demonstrating decentralized (in fact,

distributed) control. Apple maintains sole, central control of the code and thus

fully determines the functional possibilities of the operating system.

One transmitter, many receivers vs. Each receiver a potential transmitter

This is already demonstrated above: the code for GNU/Linux is globally distributed

across hundreds of thousands of computers. Each one of these computers has the

ability to modify the software and share those modifications with anyone who

will listen. Though it has been successfully hacked in order to run on non-Apple

Operating Systems 57

hardware, no one can legally modify OS X and doing so at a significantly deep level

is virtually impossible.

Immobilization of isolated individuals vs. Mobilization of the masses

OS X encourages the use of proprietary applications. These applications have re­

strictive license that generally allow only one individual the right to run the ap­

plication. Even when these applications can be altered through user scripts, they

cannot be said to be reflexive because their underlying grammars cannot be mod­

ified.

Passive consumer behavior vs. Interaction of those involved, feedback

A major advantage for both users and developers in a free software ecosystem is the

feedback that occurs between them. Users may suggest new features at any time.

If they have the skill and/or time, they can add these features themselves. If the

addition of the features is contentious in any way, the contributor can simply fork

the codebase and continue evolving the software in new directions. In OS X, you

run the binaries you are given. This is an example of an emphasis on ‘product’ over

‘process,’ as the programs that ship with OS X are available only in their current

form and offer no reflexivity to the user, who must use them as they are designed

and implemented.

Depoliticization vs. A political learning process

Mac OS X is pro-capitalist and promotes consumer culture. It can probably be said

that it is politically “neutral” in its codedness, but this very codedness remains ob­

fuscated and proprietary. GNU/Linux, in conservative judgment, at least does not

actively promote consumerism. In an idealistic formulation, it destabilizes the cap­

italist ecosystem.16 It’s politics are as multifaceted as its user base. In its well-de­

served reputation as ‘taking some work to make it work,’ GNU/Linux forces its

16
It is important to note that free software also plays a significant role in supporting this infrastructure, as

the license provides no recourse on the terms of the software’s use (Pasquinelli 2008).

Grammars of Process 58

users to become active in the system’s administration. This induced learning of an

open approach to computer systems has political dimension.

Production by specialists vs. Collective production

Apple, Inc has an enormous amount of money, reportedly earning a net income of

$5.7 billion dollars in the 2009 fiscal year (Helft and Vance 2010). This places them

on an entirely different level than the corporations dominant in the business of pro­

viding and supporting GNU/Linux distributions: Red Hat, Novell, and Canonical.

Of these companies, only Canonical is remotely poised as a company providing a

consumer-oriented operating system. In July 2010. the GNOME Project, a promi­

nant free software desktop environment for Unix systems, released its first census

of contributions. This census provides an interesting glimpse into the vital metric

of source code contributions. The largest single category of code ‘commits’ come

from volunteers, who are responsible for alomst 30% of the code used in GNOME

(Neary 2010). Even though they do not represent a majority, volunteers represent

the largest block of contribution. The prevalence of contributions of paid program­

mers does not bely a “production by specialists” because no single corporation is

responsible for producing the entirety of GNOME. Thus, GNOME is the result of

collective production, as opposed to Apple which maintains a close grip on the

OS X source code and thus positions itself as the sole specialists involved in the

production of the operating system.

Control by property owners or bureaucracy vs Social control by self-organization

The community of OS X users has no direct control over the evolution of the op­

erating system. GNU/Linux, by contrast, is characterized by its collective becom­
ing—the code contributed to the operating system comes from a diverse and distrib­

uted collection of people who literally self-organize across the Internet in order to

develop the software. Though there are gatekeepers and hierarchies that could be

considered bureaucratic (Linus Torvalds, for instance, dictates what code is added

to and distributed with the source code of the Linux kernel), the software itself

cannot be contained by these bureaucracies: FLoSS can be appropriated by any­

one, for any purpose, and with any intention so long as the terms of the licensing

agreement are met.

Operating Systems 59

3.4.2 Example: FLoSS as a Foundation for Critically Engaging Media Design

In a presentation at the Libre Graphics Meeting 2010, Florian Cramer explains his the­

oretical positioning of free software as an entry point into media criticism. Aymeric

Mansoux, also of the Networked Media design faculty at the Piet Zwart Institute and

present with fellow faculty member Michael Murtough, describes the critical engage­

ment in the error message common to GNU/Linux distributions. This is found in the

Totem media player program (the default in Ubuntu) complaining of a missing codec

library that is required to decode common patent-encumbered media formats such as

MPEG-Layer 3 (Cramer, Mansoux, and Murtaugh 2010). Behind the error message lies

an assemblage of inter-related issues of intellectual property rights, cultural practices,

and media accessibility. This is a clear instantiation of a “political learning process.”

3.4.3 Caveats

Free software is not, however, a “magic bullet”—tied to the open systems theory which is

philosophically related to the underpinnings of the Chicago school of economics, some of

the philosophical foundations of free software, and especially open source, need to be in­

terrogated (Cramer, Mansoux, and Murtaugh 2010; Pasquinelli 2008). Liberation does not

automatically lead to a distribution of tools to all those that need them. However, even

in this instance we see the power of FloSS in its capacity to inspire critical engagement

with media.

3.4.4 Reciprocal Conversations of Code

In response to Enzensberger’s essay, Jean Baudrillard wrote a paper entitled “Requiem

for the Media” in which he critiques Enzensberger’s position as an incomplete solution

for supporting a revolution (Baudrillard 1972). In Baudrillard’s opinion, Enzensberger’s

advocacy for utilizing existing media for revolutionary purposes fails to recognize that

media enable a sort of “speech without response” that creates a division between the

two sides of media transmissions: the sender and the receiver. This constructed division

demolishes the ‘symbolic exchange relation’ that exists within reciprocal conversation

and engenders an imbalanced power dynamic, as “power belongs to the one who can

give and cannot be repaid” (281).

Grammars of Process 60

Baudrillard’s criticisms rely significantly on the concept of “functional objects,”

There is no response to a functional object: its function is already there,

an integrated speech to which it has already responded, leaving no room

for play, or reciprocal putting in play (unless one destroys the object, or

turns its functions inside out). (Baudrillard 1972: 281)

Proprietary systems are purely functional objects: “its function is already there.” Sys­

tems such as the iPhone cannot begin to engage in “play” outside of the boundaries of

Apple’s software and its control of available applications until it has been “destroyed”

through the process of jailbreaking. Even where applications provide a means of script­

ing or adding new functionality, the conversation is still controlled inasmuch as the fea­

tures that may be scripted and the language in which they are scripted are still pre-de­

fined.

In the case of FLoSS, however, no destruction is required in order to modify or extend

functionality—the functioning of the software itself is the result of reciprocal conversa­

tion involving both human and non-human actors. Software such as version control

systems provide a “wall” to which source code can be written, mirroring the graffiti in

1968 which “breaches the fundamental role of non-response enunciated by all media”

(Baudrillard 1972: 287). In addition, software compilers (or interpreters) are required to

breathe functionality into the source code. The symbolic exchange relation is completely

intact in that there is no sense of sender and receiver, only participants in a collective

becoming. As it is easily appropriated into proprietary software, open source software

somewhat conflicts with this position, as modifiers of code can place themselves in a posi­

iton of “not being repaid” with further modifications simply be refusing to share their

source. In free software, however, the conversation is imminently reciprocal because

there is simply no technical means of negating a person’s ability to respond.17

17
Though the forking of code bases is often proposed as a form of democratic engagement—no one can

stop you from taking one free software project and creating another one out its code—there are naturally

economic and manpower boundaries. The point raised here is that there is no technical mechanism for

negating someone’s ability to have a conversation with the source code.

Operating Systems 61

3.4.5 Recursive Publics and Transindividuation

The origins and point of these conversations of code can be viewed in light of anthropolo­

gist Chris Kelty’s “recursive publics,” which he articulates in his study of the significance

of free software:

Recursive publics seek to create what might be understood, enigmatically,

as a constantly ‘self-leveling’ level playing field. And it is in the attempt to

make the playing field self-leveling that they confront and resist forms of

power and control that seek to level it to the advantage of one or another

large constituency: state, government, corporation, profession. It is im­

portant to understand that geeks do not simply want to level the playing

field to their advantage – they have no affinity or identity as such. Instead,

they wish to devise ways to give the playing field a certain kind of agency,

effected through the agency of many different humans, but checked by its

technical and legal structure and openness. (Kelty 2008: 10)

The recursive public of the free software community is literally and ideologically

oriented towards facilitating the development of an alternative for computing, an alter­

native that is fully reciprocal in that it legally denies anyone participating from denying

other participants the right to respond (Stallman 1985). They constitute what Simondon

calls a transindividual first discussed in Chapter 2. The community of hackers who de­

velop free software are engaged in a collective becoming with their software: from their

operating system to their compiler to their source code editors, the entire ecosystem is

‘permanently individuating,’ passing along the preindividual realities embedded in both

the software and the humans who develop it. GNU/Linux carries within it a preindi­

vidual reality that involves organizational logics built around an ideological desire to

re-distribute agency between computers and users. Actors—again, both software and

human—collectively form the transindividual that is Kelty’s recursive public. In Kelty’s

words,

A recursive public is a public that is vitally concerned with the material

and practical maintenance and modification of the technical, legal, practi­

cal, and conceptual means of its own existence as a public; it is a collective

independent of other forms of constituted power and is capable of speak­

Grammars of Process 62

ing to existing forms of power through the production of actually existing

alternatives. (Kelty 2008: 3)

The importance of using the theory of ontogenesis to describe the dynamics of FLoSS

lies not simply in its applicability—this theory should be literally applicable everywhere

that ‘becoming’ takes place. Rather, it offers the recognition that the distribution of agency
between computers and humans is the result of software, and that specific formulations and
visions of software result in variant distributions of this agency.

Chapter 4

Text as Interface/Text as Process

The CLI, once a culturally universal site of intersection between human and digital

process, has found itself virtually superseded by the visually metaphoric instrumenta­

tion of the GUI. The mechanism of this transition from CLI to GUI within mainstream

computing was the introduction of Microsoft Windows into the ecosystem of IBM-com­

patible PCs. The result was the injection of an additional semiotic layer, charged with

a new modality of visual signification, between the user and the hardware (Stephenson

1999). For almost two decades consumer versions of Windows, however, were “DOS

front-ends” that could not function without real, historical dependencies fulfilled by the

presence of DOS deep within the guts of the operating system. Windows 1.0, for in­

stance, used DOS’s file operation functions (Windows 1.0 2010). This dependency on DOS

recedes over time, eventually disappearing entirely in Windows XP, in which the DOS

interface and functionality still exists but has migrated out of the substrate and into a

virtual machine (Windows XP 2010).

The roots of the command line lie in a very physical process: the teletype. A teletype

resembles a typewriter in that it presented the users with a standard typewriter keyboard

as a control. Pressing a key would result in an inked stamp of that keys respective charac­

ter smacking onto the paper and retract, leaving its mark. Simultaneously the triggering

of the key might be punched into a tape as a binary sequence representing the character.

If so, the control was thus separated intrinsically between human and digital—it was not,

as in today’s keyboards, simply electrical signals converted into numbers transparently

beneath our fingertips but rather also a physical instantiation of the sequence on a paper

strip. The screen of this human-digital intersection was instantiated on the same paper

as the recording of the input, using the same ink and stamps but now powered by the

response of the machine to its human input.

Stephenson identifies an extremely formal dynamic of interacting through teletypic

screens he encountered when learning to program in high school:

Grammars of Process 64

Anyway, it will have been obvious that my interaction with the computer

was of an extremely formal nature, being sharply divided up into differ­

ent phases, viz.: (1) sitting at home with paper and pencil, miles and miles

from any computer, I would think very, very hard about what I wanted the

computer to do, and translate my intentions into a computer language–a

series of alphanumeric symbols on a page. (2) I would carry this across a

sort of informational cordon sanitaire (three miles of snowdrifts) to school

and type those letters into a machine–not a computer–which would con­

vert the symbols into binary numbers and record them visibly on a tape.

(3) Then, through the rubber-cup modem, I would cause those numbers

to be sent to the university mainframe, which would (4) do arithmetic on

them and send different numbers back to the teletype. (5) The teletype

would convert these numbers back into letters and hammer them out on

a page and (6) I, watching, would construe the letters as meaningful sym­

bols. (Stephenson 1999)

In this text, titled “In the beginning was the command line,” Neal Stephenson pro­

ceeds to identify the underlying mechanisms of human-digital processual intersections:

“computers do arithmetic on bits of information. Humans construe the bits as mean­

ingful symbols.” He notes, however, that this act of translation is increasingly obscured

by ever-increasing metaphoric abstraction, starting with the GUI and carrying on over

the course of the evolution of graphical interfaces. Command-line interfaces are close

to the bottom of the “stack” of the cross-translation between symbols and bits, whereas

“[w]hen we use most modern operating systems, though, our interaction with the ma­

chine is heavily mediated. Everything we do is interpreted and translated time and again

as it works its way down through all of the metaphors and abstractions” (Stephenson

1999).

Text, as the least abstract of the available sites of symbol translation into digital bi­

nary forms (which can be considered the text of a different alphabet), is the formal level

of computing. As such, the general non-consideration of the CLI in new media discourse

is a disservice to the metamedium with which much of our discourse concerns itself.

Florian Cramer has identified an intrinsic ‘contradictory nature’ of the computer

(Cramer 2005). This contradictory nature envelops the command line as well. A tool

Text as Interface/Text as Process 65

at once more powerful and more flexible yet equally more opaque and unyielding. To

begin to understand the command-line is to begin shooting lit arrows in the dark, light­

ing fires of process that can burn the results of their functioning onto your harddrive,

your graphics card, your BIOS, or your network as easily as onto your screen. The Unix

command

rm -rf /*

will erase the entire contents of a Unix filesystem from the hard drive. The code for

rm loaded into memory survives to delete itself from a core component of its materiality,

that is, the raw 1s and 0s on the magnetic platters that constitute the persistent body

of the command. It will not, however, survive the reboot inevitably awaiting such a

mangled system.

4.1 Remediation and the Command Line

Today’s command-line is driven by computer keyboards and its outputs are displayed on

computer screens, often within the context of ‘terminal emulators’ running in a GUI envi­

ronment. This very idea of “terminal emulation,” however, leads directly into the specific

history of human-computer interfaces. Terminals were the previously dominant form of

interface, arising after the evolution of time-sharing systems. Though they were made

obsolete with the advent of microcomputer workstations, their legacy remains with us

today. An inquiry into the history of terminals, and their predecessors, allows a glimpse

into the role inertia plays in the course of computer evolution.

4.1.1 Interface: From Wires to Text

Long before the interactive, real-time interfaces of today’s computers and yesterday’s

terminals, computers were programmed exclusively through the use of wires to direct the

sequence of operations that defined a computation (Ornstein 2002: 10). Severo Ornstein,

a programmer from what he calls “the Middle Ages,” writes in his account of computer

evolution that as a child his wife, whose father was worked in the ENIAC18 project that,

18
The ENIAC was one of the very first programmable computers. It took up an entire floor of the building

it was housed in.

Grammars of Process 66

was deemed one of the first “un-programmers”—her job was to remove wires and sort

them by length so that they could be used again (11). “Spaghetti code,” a term still in use

today to describe convulated source code, originates in this early, extremely material

form of programming.

A separate form of programming had already been in use in analog machines such as

industrial looms and tabulating machines: the punch card. Eventually computers were

taught to read instructions from these cards, and it is the punch card that typifies the age

of batch computing. Punch cards were volatile in that the misplacement of a single card

would render the program unexecutable, as would an errant punched hole or a dog-eared

card. Punch cards were also complex in their instantiation—programmers did not punch

the cards themselves but instead handed their machine instructions to keypunchers who

proceeded to translate these instructions onto the punch cards. According to Ornstein’s

experience, these keypunchers were exclusively female as well as generally underpaid

(Ornstein 2002: 38–39; Chun 2004).

To be quite clear, I view punch cards as a distinct medium. They represent a clearly

reflexive site of mediation that enfolded multiple processual grammars. In fact, punch

cards were in use decades before programmable computers were first developed—their

use in programming, then, represents a distinct organizational logic which only evolved

as a result of the computer. Within their specific use in computers, punch cards are quite

interesting in that they handled multiple processes that have since become handled by

discrete, specialized processes. According to programmer and computer historian Dou­

glas Crockford, punch cards served as memory, storage, archive, network, and user inter­
face (2010a). The “outsourcing” of these functions into discrete processes represents an

opportunity to question remediation. Were punch cards remediated into RAM (mem­

ory), magneto-optical drives (storage), magnetic and optical backup options (archive),

and Ethernet (network)? And what of user interfaces? Do they remediate punch cards?

The pull towards immediacy seems to be at play in that all of these replacement

processes offer distinct improvements in user experience. However, each of these de­

velopments can also be explained as specific process hybridities that evolved under new

grammars that do not embed and extend the punch card. Rather they rise to the chal­

lenge of providing functionality that once relied solely on punch cards. Of all the material

specificities of those cards, the only remaining evidence of their existence in the replace­

Text as Interface/Text as Process 67

ment grammars is an 80-character limit that is still observed in the coding guidelines

of many open source projects. However, observance of this limit is today attributed ei­

ther to readability or to compliance with those who may still be working with devices

such as printers and terminals that were developed when computers enforced this limit

for compatibility reasons (Slashdot 2007). The organizing logic of the punch card has

completely faded into history, the underpaid keypunchers and insulating layer of human

operators largely forgotten. Perhaps the answer lies in the CLI that represents the next

site of human-digital interaction after the obsolescence of batch computing.

4.1.2 The Command Line is a Medium

The processes embodied in file operation commands instantiate into material effects on

hard drives. They are abstractions of processual hybridization that results in the same

command in the same operating system having the same effect on the file system. The

modules loaded into the assemblage offering this abstraction depend on the format of the

file system (NTFS, HFS+, ext*, etc.), the motherboard-to-disk controller protocol (IDE,

SCSI, SATA, etc.) and the driver specificities of that disk controller. All of these elements

are unique, digital assemblages. The embodied processes that are typed commands cannot

be accurately held to the standard of a theory that is based on a conception of media as

containing and extending previous media. It is not that the medium of punch cards that is

remediated—rather the command-line assembles processes that previously required punch
cards and organizes them into a new logic through a specific grammar.

These commands, these arrows flaming into the dark, have only the output of text

in order to satisfy the needs of immediacy, but when teletypes (and later terminals) first

arrived this level of interactivity was unprecedented. This interactivity inspired the de­

velopment of many new media. Text editing and email are two commonly hybridized

processes that have been around since the early beginnings of time-sharing, and Dou­

glas Crockford is quick to note that social networking tools and blogs appeared in early

time-sharing systems as well. However, due to the natural reliance of the keyboard as

the control of the command line, these interfaces are often rely on combinations (or

“chords”) of key presses for purposes of navigation and process instantiation. This is a

new type of immediacy only became available through the development of interactive

teletypes, which took the medium of the typewriter and developed a new organizational

Grammars of Process 68

logic that hybridized processes of modems and tape manipulation into a new assemblage.

This chord-based immediacy comes with a steep learning curve but, once mastered, it re­

wards the user with productive potentials beyond what is accomplishable through the

generally-considered-superior GUI. Some hackers joke that their favorite operating sys­

tem is their text editor emacs, which is noted for accomplishing everything from coding

to typesetting (through the powerful AUCTeX extension) to email and calenders to web

browsing. All interaction is accomplished through these chords of key presses.

The command-line is a medium because it reflexively develops new grammars of

process. Beginning with the re-purposing of the typewriter into the teletype, the com­

mand-line then moves to the terminal. After the introduction of the GUI, the com­

mand-line moves comfortably into terminal emulation programs. Each of these tran­

sitions is characterized by an increase in immediacy, demonstrating that at least this

driving force of remediation is at play. However, despite changes in the materiality

of the interface in front of the human, the site of action of the command-line remains

the computer. The materiality of interfaces even constrained the capacity of the com­

mand-line, as in the case of the 80-character line width limit found in terminals such

as the DEC VT100. However, as processes evolved, the command-line medium moved

from one organizational logic to another. Rather than an example of remediation, this

travelling of the command-line represents a medium that continuously developing new

processual grammars by hybridizing new processes according to its own organizational

logic—and with an apparent drive for immediacy. The quest for immediacy should not

be seen as proof of remediation, but rather as a seemingly ever-present drive stemming

from somewhere within human process.19

4.1.3 Commands are Processual Grammars

The grammar of Unix includes the concept of ‘pipes’, which are used to redirect the out­

put of one command into the input of another. There are three predefined pipes: STDIN,

STDOUT, and STDERR. These are mapped to the keyboard, the screen, and a background

program called the ‘syslog,’ respectively. Like much of Unix, however, these standard

19
Considering the traditional programmer obsession with ‘efficiency’ in relation to immediacy may be a

fruitful endeavor in questioning the impulse of these changes, however.

Text as Interface/Text as Process 69

pipes can be reconfigured in order to point elsewhere. Indeed, this is one of the most

powerful aspects of the CLI. By redirecting the STDOUT of one program into the STDIN

of another, a sort of ‘freestyle’ hybridization of process can be achieved.

For instance, running the following command

ps -aux

results in a list of all running processes within the system being printed to the screen.

Since the screen is simply the place where STDOUT is pointed, however, one can pipe the

output of that command into the input of another. The following

ps -aux | grep -i ps

displays only the processes belonging to the program ps. If those results are better

served by saving in a file, then

ps -aux | grep -i ps | cat > ps.output

stores the results in a file called ps.output.

This displays the central problem with Manovich’s media hybridity. Clearly there is

a hybridization occurring: the results of each sequence of commands vary in effect. De­

scribed as a case of media hybridity, however, then each individual command “becomes,”

discursively, a medium. Rather than neatly packaging these operations into unitive “new

media species”, the lens of transduction allows one to more rigorously consider the spe­

cific arrangements of the organization of these command sequences and, it follows, soft­

ware in general.

The command-line represents a markedly distinct means of organizing metapoten­

tial. It is defined by a logic that does not elevate human metaphors to the extent of the

GUI. To this extent, it represents a different distribution of agency between humans and

computers, one that is less aimed at privileging humans. In this sense it can be consid­

ered a more ‘egalitarian’ distribution. Eric S. Raymond discusses the differences in the

distribution of agency between the GUI and CLI (though without invoking the idea of

agancy),

The explosion of interest in GUIs since 1984 has had the unfortunate effect

of obscuring the virtues of CLIs. The design of consumer software, in par­

ticular, has become heavily skewed toward GUIs. While this is a good

Grammars of Process 70

choice for the novice and casual users that constitute most of the con­

sumer market, it also exacts hidden costs on more expert users as they

run up against the expressiveness limits of GUIs—costs which steadily

increase as the users take on more demanding problems. Most of these

costs derive from the fact that GUIs are simply not scriptable at all—every

interaction with them has to be human-driven. (Raymond 2003)

The GUI’s reliance on human input reflects a higher distribution of agency to the

human at the expense of the computer which reduces the capacity of the computer to

perform tasks it is normally excellent at: automation and hybridization of process. It

is also a distribution of agency that carries with it a false formulation: the orientation

of the GUI towards making things easy for humans eventually decreases their agency

if the complexity of their task increases beyond the functionality provided by the GUI.

Despite the higher “mnemonic load” of the CLI, there are tasks which the CLI completely

trumps the GUI in terms of productivity, such as Raymond’s example of interacting with

databases.

Chapter 5

Top Down/Bottom Up

This chapter concerns the conditions specific to the workflow of generative typesetting

involved in this thesis. This includes both a historical and compositional survey of the file

formats involved as well as a discussion of the specificities involved in the organizational

logic of this workflow. To begin I will make a distinction between two modes of type­

setting found within the computer along a division of “top down/bottom up” approaches

that will encompass this historical-compositional survey.

5.1 WYSIWYG

WYSIWYG, meaning “What You See Is What You Get,” is a mode of interface design in

which operations are performed in an extremely top-down manner. In terms of type­

setting, the definitive example of WYSIWYG is Microsoft Word. Word is often deemed

a remediation of the typewriter. Indeed, it embeds and extends many of the material

specificities of the typewriter, from the line and margin width sliders at the top to the

per-line linebreaking found within that medium.

In this sense, MS Word is clearly an instance of attempted immediacy. By remediating

the then-familiar modality of the typewriter into the context of the computer screen,

Word created a state immediacy that was instantaneously seen as revolutionizing . But

if the typewriter is a medium, something which few media theorists would likely argue

against, then is Microsoft Word a medium as well? Here again we see the slippery slope

of media conflation within the metamedium. The boundaries must exist somewhere, if

only for the purposes of coherent discourse. Just as one is unlikely to consider different

models and brands of typewriters as separate media, it similarly makes sense to say that

word processing applications as a whole constitute a medium. Variations between these

applications are, once again, seen as variations in organizational logic.

There is a distinction, however, between word processing applications and simple,

plain-text editors. While word processors do remediate typewriters in a classical exam­

Grammars of Process 72

ple of Bolter and Grusin’s theory, text editing applications do not remediate their punch

card ancestors. Instead they constitute a new process hybridity, one which does not share

any process that was specific to the typewriter other than using keys to output charac­

ters. While it is true that “what you see is what you get,” text editors are not generally

considered WYSIWYG because they lack formatting options beyond what is available

on the keyboard. These formatting options offer space for new processual grammars to

evolve within the domain of plain text editors, as will be seen later in this chapter.

The WYSIWYG interface is clearly a top down approach, as all manipulations come

from invoking processes onto what has already been placed into the interface. Critical

designer Femker Snelting, member of Open Source Publishers, characterizes WYSIWYG

as “What you see is what it is,” a phrasing that emphasizes the linear workflow imposed

by the interface (Snelting and Huyghebaert 2010). This linear workflow is fully geared

towards the human, even to the extent of presenting users with the comfortably remedi­

ated interface of the typewriter. From this perspective, WYSIWYG is organized towards

outputting a product via a processual grammar that privileges the human user from intent

to interface.

5.2 Processed Text

Processed text comes in two flavors: semantic and formal. Semantic formats such

as HTML and XML are far more widely used than formal formats such as TEX (and

LaTEX/ConTEXt). While both are bottom up in contrast to WYSIWYG, there is a dis­

tinction even here between top down and bottom up. They are both bottom up in that

the typesetting goals of any block of text are specified at the beginning of that block,

i.e. and \quote are both typed before the block of text begins.

HTML is top down, however, because that is its rendering model. By imbuing blocks

of text with semantic qualities, one abstracts away the process of displaying those seman­

tic blocks. Order is imposed from above, both through Cascading Style Sheets (CSS) and

through the rendering algorithm of a given browser’s implementation. This is a sort of

outsourcing of the specifics of typesetting, a demanding craft that—as I have learned—re­

quires careful attention to detail in order to produce outputs of high quality.

Top Down/Bottom Up 73

5.2.1 HTML, or Semantic Markup is Literally an Organizational Grammar

The concept of semantic markup predates HTML by a considerable margin. However,

HTML represents the ‘watershed’ format through which semantic markup entered mass

usage across the world. The idea of a semantic markup revolves around a desire to sep­

arate content from presentation. The effects of such a separation include machine-read­

ability: even though a computer might not have any sense of what a <title> is, it can

still tell you exactly text is being marked with such a tag. This machine readability is the

primary problem domain from which semantic markup evolved.

It is the dream of the World Wide Web Consortium (W3C), headed by HTML in­

ventor Tim Berners-Lee, to create a “common information space” based on principles

of “universality” (Berners-Lee 1998). This universality is heavily based on the semantic

capacity of HTML. To further this same goal, the W3C has also sought fit to create a

format, called eXtensible Markup Language (XML), in which a user can define their own

semantics so long as they follow XML’s syntax. The success of this approach is evident

in the widespread adoption of XML as a basis for formats as diverse as OpenOffice.org

documents and the RSS feeds driving much of the ‘mashability’ of the current Web.

HTML evolved from the context of Standardized Generalized Markup Language

(SGML), which in turn was developed out of the context of the Generalized Markup

Language (Crockford 2010b). Thus, the roots of HTML extend back into the 1960s, when

GML was first codified at IBM. It was specifically designed for machine-readability and

it was put into use by organizations that required documents to be readable over long

stretches of time.

From a process-oriented perspective, HTML is not a medium. It is a process hybridity

assembled from existing developments in semantic markup and hypertext. This is per­

haps a counter-intuitive statement considering the direction of existing media discourse.

However, just as with our example of makes and models of typewriters, different organi­

zational logics of hypertext are not sufficient to attain the label of medium—the medium

remains hypertext.

5.2.1.1 HTML as a Productive Site of Transduction

From the beginning of the World Wide Web’s popularity it has been the site of constant

Grammars of Process 74

transduction as the potentials of a “common information space” inspired solutions to

problems with the original implementation. First came the introduction of the tag

by in the University of Illinois’ Mosaic, a modification to HTML that Berners-Lee orig­

inally opposed (Crockford 2010b). This satisfied an urge for multimedia by hybridizing

the grammar of HTML with existing digital image formats. Along with the tag

came a host of others, such as <blink> and other means of modifying the presentation

of a page.

In response to this proliferation of presentation-oriented tags (which they had never

approved), Berners-Lee and his team at the W3c introduced Cascading Style Sheets (CSS).

CSS provided a means for informing the browser of the intentions the page author had

for the presentation of her HTML. This further developed the ideology of “separating”

form from content and forever changed the specificities and experience of the Web.

The introduction of JavaScript and the Document Object Model likewise engendered

significant changes in the ways that user’s experience HTML. When rendered in a mod­

ern browser, HTML becomes mapped to the DOM in a hierarchical system of parents,

children, and siblings. JavaScript provides a means for interacting with the DOM in

real-time, as the user is browsing the page. Since the DOM also tracks the CSS asso­

ciated with HTML elements, and CSS (theoretically) controls the presentation of those

elements, JavaScript can modify the DOM so that certain pieces of the page appear or dis­

appear in response to arbitrarily defined actions. This is the mechanism that the HTML

version of the thesis uses in order to display only one chapter at a time—the entire thesis

is present in the HTML of the page, but only select parts are set to visible by JavaScript

at any given time. The development of AJAX in the first decade of the twenty-first cen­

tury further changed the user’s experience of the Web by enabling the insertion of new

HTML content from the server without loading a revised version of the page in the user’s

browser.

Thus, even from a specificity or effect standpoint, HTML is not a medium: HTML in

today’s Web is irrevocably altered by the integrality of JavaScript, the DOM, CSS, and

(increasingly) AJAX to it’s modern presentation and experience. Removing these ele­

ments destroys the specificities and effects that currently characterize the Web, because

the Web has become a process hybridity that relies on much more than HTML alone.

This fact also belies the idea that form and content are separable (Schuller 2008).

Top Down/Bottom Up 75

In the words of Douglas Crockford, the success of HTML is “due primarily to a lot of

very clever people who found ways to make it work in spite of its inherent, intentional

limitations” (2010b).

5.2.2 TEX, or Text That Typesets Itself

Donald Knuth is a prominent figure in the field of computer science due to his series of

books, The Art of Computer Programming. The series is ongoing, but the first volumes

were published in the 1960s. During the 1970s many publishing house switched to new

photo-optical systems for their typesetting. When Knuth viewed the galley copies for

a new edition of the second volume that was to be printed using one of these new ma­

chines, he noticed that the typographic quality had dropped precipitously (Knuth 1999:

5). Knuth’s response was TEX, a programming language built specifically for the purposes

of typesetting.

Femke Snelting identifies in Knuth’s writing an impulse to design not simply a system

for typesetting, but in fact the best system (Snelting and Huyghebaert 2010). Evidence of

this appears towards the beginning of his 90-page chapter describing the details of TEX’s

line-breaking algorithm. From his perspective as a computer scientist (or, perhaps more

accurate, a “computer artist”),

A properly programmed computer should, in fact, be able to solve the

line-breaking problem better than a skilled typesetter could do by hand

in a reasonable amount of time—unless we give this person the liberty to

change the wording in order to obtain a better fit. (Knuth 1999: 69)

Line-breaking, or justification, is not only a deeply complex problem—it is a serious

issue for readability. In the words of designer Robert Bringhurst, “A typewriter (or a

computer-drive printer of the same quality) that justifies its lines in imitation of type­

setting is a presumptuous, uneducated machine, mimicking the outward form instead of

the inner truth of typography” (Bringhurst 2008: 28). TEX, then, is an attempt to express

this ‘inner truth’ by integrating the design principles set forth by defining modernist

designer Jan Tsischold at a level of “mathematical precision” (Snelting 2009: 324).

In stark contrast to HTML, the TEX programming language contains no sense of se­

mantics. Instead of ‘tags’ which notify a machinic interpreter of the specific structural

Grammars of Process 76

quality pf a given piece of text, TEX wraps text in commands when it wishes to process

that text in some way. Once the processing has occurred and the text has been set ac­

cording to the execution of those commands, there is no sense within the document

format itself of the significance of any given text.20 This processing of commands rather

than semantics means that TEX is a formal markup: the markup, embedded within and

inextricably from the content, literally determines the final shape and structure of the

output.

As a programming language, TEX does have the capacity to organize commands into

‘macros.’ This capacity for organizing commands allows TEX users to avoid repeatedly

typing in any patterns of commands they use on a regular basis. Multiple ‘macro pack­

ages’ were developed, some of them commercial and others freely shared. The most

popular of these is LATEX. Perhaps unsurprisingly, LATEXwas designed in order to give the

creation of TEX-based documents a more semantic structure. In doing so, however, it

tends to limit the typographic choices available to the user. This is not generally a prob­

lem within the most common use cases of LATEX: academic journals, especially within

fields which use a great deal of mathematical formulas. In this context, typographic

variability is irrelevant as accomplishing one’s typographic goals is simply a manner of

following the semantics of the journal’s LATEXtemplate.

When the demands are more complex, however, this style of insulating the user from

their capacity to shape their own typesetting process can be a total deal breaker. This

was the experience of Open Source Publishers, whose design goals could not be reached

do to various incompatibilities between LATEXextensions which chose to hardcode values

for the user for the sake of convenience only to end up conflicting with other extensions

(Snelting 2009; Snelting and Huyghebaert 2010). The solution they chose was a macro

package I had selected to learn when I first discovered the relative non-configurability

of LATEX: ConTEXt.

5.2.2.1 ConTEXt as a Perpetual Becoming

ConTEXt was developed to suit the needs of the Dutch company Pragma ADE, a com­

20
This may begin to change as the newest TEX engine—LuaTeX—supports the PDF/X standard, which allows

for the tagging of text within a PDF file.

Top Down/Bottom Up 77

pany which deals primarily with the typesetting of educational textbooks. In a “comple­

mentary approach” LATEX, ConTEXt provides “structured interfaces for handling typog­

raphy, including extensive support for colors, backgrounds, hyperlinks, presentations,

figure-text integration, and conditional compilation” (contextgarden 2010). The project

traditionally had no version numbers. Advancements were simply introduced into the

code and distributed as they occurred.

Starting in 2005, however, ConTEXt was broken into two versions. The new version,

dubbed MkIV, would migrate to a new TEX engine called LuaTeX. LuaTeX is a very inter­

esting example of process hybridity. Its individuation came in response to limitations in

the TEX implementations existing at that time which lacked bidirectional, multi-lingual

typesetting and support for the new font format OpenType. It significantly changes the

potentials of generative typesetting by integrating the modern programming language

Lua into the existing pdfTeX engine. In so doing, it exposes the internals of TEX’s type­

setting functionality to re-configuration in ways that simply are not possible with the

TEX programming language alone.21 As just one example, it is theoretically possible to

do the entire generative typesetting exercise completely within LuaTeX such that Lua­

TeX would take care of generating both a PDF and an HTML file from the Markdown file

in which this thesis is actually written. This would be a significantly different case than

the way the thesis is generated now. The field of potentiality is even much greater than

that, however, as the entirety of existing Lua code—and anything to be written in Lua in

the future—can now be used in the typesetting of ConTEXt documents.

This new hybridity that is LuaTeX, then, does not represent a new medium inasmuch

as it presents a new organizational logic that redistributes agency around the constraints

of the original TEX implementation.

21
TEX is hindered by the age of its implementation in that it lacks many features often considered essential

in modern programming, something which its hybridization with Lua seeks to address.

Chapter 6

Generative Typesetting

6.1 Environment of Operation

This text is not typed in the manner that you see it. The above section header is instead

written like this:

Environment of Operation

Through the wrapper program pandoc, this input, written in a format called Mark­

down, is converted into HTML and ConTEXt outputs.

HTML

<h1>Environment of Operation</h1>

ConTEXt

\section{Environment of Operation}

The syntax of HTML represents a semantic operation: “Dear Mr. Browser, treat this

as a header of level 1. Treat it first according to any rules defined within CSS and, failing

that, display it the way you usually do.” The syntax of ConTEXt, however, represents

a macro command within a programming language. What it says is “call the sections

of code that translate the text within the brackets to the parameters specified for the

\section{} command.”

The literal ‘writing space’ of this thesis is a program called Textroom. Textroom is

a minimalist text editor in which there are no buttons, taskbars, or other clutter. Only

you, your words, and (optionally) informational text reporting the time, word count,

percentage to accomplishing your writing goal, etc. But this is not a new medium! It is

simply an individuation directed by the problem of distraction within the GUI and the

Grammars of Process 80

(lack of) aesthetics in most available text editors (and word processors, for that matter). It

reconfigures existing terms into a new process hybridity driven by its own organizational

logic. But it is not a new medium.

Figure 3 The Textroom editor running in full-screen mode.

By writing in plain-text, I open myself to the opportunities afforded me by version con­

trol systems. Developed to enable collaboration of programmers on a code base, version

control systems can track changes in text across time (useful for this project) and allow

for massively distributed workflows involving tens of thousands of individuals (useful for

the Linux kernel). This capacity for version control is a distinct advantage of plain text

over the more complex, binary file formats used by word processors. Since the plain-text

is organized according to the logic of Markdown, it can potentially become anything.

6.1.1 Markdown and Preindividuality

The nature of a pre-format’s materiality is even more convulated than that of the

average digital object. Figure 4 displays the unintentional rendering of the my bibliogra­

phy by the github’s web site when using it to access the copy of ‘bibliography.md’ stored

there. This demonstrates the relative ubiquity of Markdown’s processual grammar.

Generative Typesetting 81

Figure 4 The file ‘bibliography.md’ is automatically rendered through the web interface of github.com, where

it is stored in a version control repository.

‘bibliography.md’ is clearly “more than unity” in that it is a site of constant translation

into other formats. Even when it is innocently uploaded to a version control repository

for safe-keeping it cannot escape its fate as a “more than identity.” It is an object intended

for translation, structured around the idea of becoming. In that sense, then, it might be

considered as a transduction in progress, an individuation that never ends because the

potential for translation is always there. A Markdown file’s level of potential actually

increases over time as more processual grammars hybridize Markdown into their assem­

blages and tools enable translation to new outputs. This is similar to a highly charged

metastability in that it is constantly provoking new transdusctions.

Simondon states that a preindividual nature “remains linked to the individual,” exist­

ing as “a source for future metastable states from which new individuations can emerge”

(2002: 8). Perhaps, then, it can be said that a Markdown file retains a great deal of its

“preindividual nature,” carrying some of the malleability of the metamedium from which

it itself individuated.

Grammars of Process 82

6.2 Constraints

When I first began this project and explained it to Florian Cramer, he warned me that

what I was searching for was a ‘Holy Grail’ that had been sought by many. This Holy

Grail is a ‘universal document format,’ a mechanism that can arrange itself to the speci­

ficities of any format that might be desired. Many have tried, and none have succeeded.

The systems become weighted down in wrappers such as Pandoc, which require wrap­

pers on top of them in order to satisfy the edge cases that inevitably result from the

specificities of various formats. Though I was skeptical that such “double-wrapping”

was inevitable, my experience has born out the accuracy of his observation.

An unfortunate constraint is the inability to take advantage of elements of the TEX

landscape that are renowned for making life easier. The chief among these is BibTeX,

which allows for a bibliography to be dynamically generated and citations to be inserted

according to a variety of formats (that one can change with a single line of text, if desired).

By abstracting myself from TEX by using Markdown as the “pre-format,” I’ve lost the

opportunity to easily manage bibliographic data and instead must input it by hand. That

said, the MLA format is not currently available in BibTeX meaning that—even if I could

use this software—the output would be necessarily shaped by the constraints of the tools.

This tendency to be forced to simplify (or perhaps even “weaken”) the document as

a whole was raised by Femke Snelting during a personal interview I conducted with her

and fellow Open Source Publisher Pierre Huyghebaert (Snelting and Huyghebaert 2010).

Snelting is intensely interested by the ways that our tools shape what we make, and this

is a clear example of this dynamic.

6.2.1 Glue, or, A Pre-Format Necessarily Complicates While it Simplifies

Using Markdown as a pre-format complicates several issues with typesetting documents

in both HTML and ConTEXt. The reason for this is the prevalence of edge cases, which can

be defined as specific constraints arising out the translation into output formats that have

different organizational logics. For instance, ConTEXt includes a \chapter{} macro,

which influences the numbering of sections so that sections are relative to the chapter

number, rather than to the entire text. Thus the first section of chapter two will be

rendered into text as ‘2.1’. An issue arises because HTML has no similar distinction:

Generative Typesetting 83

sections are related to the depth of the header, such that H1 is the highest level section

(the equivalent of ConTEXt’s \chapter{}). In markdown, the top-level section appears

as in the example above, that is using a single ‘#’. My initial solution was to include two

sections with only one ‘#’ per chapter, the first of which I would manually change from

\section{} to \chapter{}, with the result that the sectioning of the chapter fits what

is expected—chapter 2, section 1 is numbered as ‘2.1’.

This does not satisfy HTML, however, as there is nothing to change the first single ‘#’

into: it is already inserting the highest level section, ‘H1’. Thus, where ConTEXt begins

numbering the sections within the chapter (2.1, 2.2, etc.), HTML increments the top-level

section number, so that the second single ‘#’ increments to ‘3’, instead of to ‘2.1’. If a

double ‘##’ is used, the sectioning will appear as we desire in the HTML, but will appear

as ‘2.0.1’ in ConTEXt. This incompatibility requires either modifying Pandoc through

its native scripting facilities or else the creation of a specific ‘helper’ script to create

a sectioning parity between the two output formats. As the native scripting facilities

require working in Haskell—a language I do not know—I’ve opted for the second solution.

Since Markdown allows passing TEX commands, I solved the problem by using

\chapter{} to designate the chapter title. Then, using a command-line script written

in the Ruby programming language, a copy of the markdown file is created in which

\chapter{} is replaced by a single ‘#’ and all subsequent ‘#’s are increased by one’#’ un­

til the next \chapter{} is reached. From this copy we generate the HTML version, while

the original can be processed into TEX. Perhaps this technical description appears to be

more of a computer science discussion than it is a media theory one. However it high­

lights how processes hybridize: the conflicting grammars of ConTEXt and HTML create

a complication which the wrapper program Pandoc either does not or can not address.

To work around this issue, a separate program (the Ruby interpeter) is used to integrate

a script file22 which deals with the problem. This is a common feature of a command-line

based workflow: “glue” scripts are written in order to fuse processes together. The effect

is ‘wrapping a wrapper’ and from my experience there is always a secret fear that the

glue code will fail at exactly that moment when the deadline strikes.

For another example, the subtitle and the abstract of this thesis are not included in

22
The source for the entire workings of the thesis, including all the input files, templates, and wrapper script,

is available at http://github.com/ab5tract/new_media/thesis.

http://github.com/ab5tract/new_media/thesis

Grammars of Process 84

the original input file. Instead they are stored as variables in a script I use to handle edge

cases and are passed to the pandoc program as arguments on the CLI. Pandoc, in turn,

maps these arguments to variables that I can place in their appropriate positions in the

template files pandoc uses for generating the ConTEXt and HTML outputs.

6.2.2 Regular Expressions Build This Thesis

Regular expressions are the single most important element in the creation of the glue

layer that binds this thesis together and they represent another avenue for demonstrating

process hybridity. Since their introduction into the early text editors QED and ed by Ken

Thompson, regular expressions have since been incorporated into many Unix commands

such as grep and awk, newer editors such as vi and emacs, and programming languages

such as Perl, PHP, Python, Ruby, and many more (Regular expression 2010). Regular

expressions are a means for describing parameters of text searches, whereby arranging

esoteric control characters in and around a segment of text allows for finely tuned pattern

matching within text.

The processual grammar of regular expressions has been adopted by nearly every

major programming language: from Wikipedia, the list includes “Java, JavaScript, PCRE,

Python, Ruby, Microsoft’s .Net Framework, and the W3C’s XML Schema” (Regular ex­
pression 2010). This list of languages refers to those who have hybridized some form

or derivative of Perl’s implementation of regular expressions, which is considered more

robust than Ken Thompson’s original version.

Is it possible to say that these programming languages are ‘remediating’ the regular

expressions from Perl? It is not beyond reason to assert that programming languages are

‘media’—Alan Kay has referred to Smalltalk as a new medium, for instance (Kay 1977:

395). However, mapping the term medium onto a programming language falls into the

same trap of stretching the term medium until it becomes incomprehensible. Do different

versions of the same language, representing different capabilities and even incompatible

syntax changes, constitute separate mediums? What is useful about applying the term

medium here, other than it enables us to discuss the prolific implementation of regular

expressions as an example of ‘remediation’?

Programming languages often borrow concepts from each other, as this example of

regular expressions clearly demonstrates. Saying that Perl remediates C syntax because

Generative Typesetting 85

it uses curly braces and semi-colons under-emphasizes Perl’s own syntax. Rather it seems

more evocative to describe how Perl hybridizes elements of C’s grammar while augment­

ing them with grammar of its own.

In other words, to say that

my $variable = "value"; # defining a variable in Perl

is a remediation of

char[5] variable = "value"; /* defining a variable in C */

is an over-simplification. It obfuscates significant algorithmic differences in the two

approaches by focusing on the surface level syntax (which is relatively similar) over the

significant internal differences in the way the two languages deal with variables (such as

static versus dynamic typing). The grammar of C is hybridized by Perl—re-implemented

rather than remediated, related yet irreconcilable. Implementation differences have huge

implications on the utility and functionality of the languages, a theoretical framework

that focuses on surface-level similarities is incapable of expressing the variation that

occurs beneath those similarities.

Rather than a remediation of regular expressions, then, we see a hybridization of

specific grammars of regular expressions, with the most popularly hybridized grammar

deriving from the version found in Perl. However, many of the languages that hybridize

the Perl version of regular expressions only implement a particular subset of that ver­

sion. Additionally, extensions may be added that are not included in Perl. The result is a

proliferation of regular expression grammars as they are integrated into various process

hybridities such as programming languages, command line utilities, and text editors.

The website Rubular stands as an example of how far-reaching the hybridization of

regular expressions has come in terms of process assemblage complexity (Lovitt 2010).

The website utilizes not only the HTTP protocol that drives the World Wide Web, it uses

AJAX in order to provide real-time representations of pattern matching within a Ruby

interpreter (of which there are many). The GUI browser is involved in this assemblage

by design[^zen]. So is a web framework of some kind, running in the Ruby interpreter.

There could be an argument made against such far-reaching hybridity: Ruby can be

programmed interactively, line by line, in it’s interpreter. The layers of code wrapped

Grammars of Process 86

around the processing of Ruby regexes could be seen as superfluous—in fact, this is a

common attitude of certain hacker types who look with disdain upon any non-essential

functionality. Questions of essentiality in software remain an under-discussed topic in

new media studies, despite the ever-present debates among developers on the issue. In

this case, remediation seems to be at play. By hybridizing regular expressions with a

Web 2.0 interface, the example of Rubular demonstrates perfectly the urge for immedi­

acy described by Bolter and Grusin, even to the extent of real-time “Match/No Match”

evaluation of the regular expression that one is testing.

However, there is a conflict between the apparent remediation of regular expressions

from the CLI to the Web and the fact that both the web site and the regular expressions

are running in a Ruby interpreter. From a process-oriented perspective, this is simply

a hybridization of regular expressions a new organizing logic that presents a Web 2.0

interface.

Regular expressions are a specific grammar of process that provide the functionality

that enables the generative typesetting workflow of this thesis. They are imperative in

the specific, as they allow me to reconfigure the original Markdown source into two

intermediate Markdown files each tailored for conversion to a respective output format.

They allow me to integrate my own markup specificities, such as (%grrrquote), which

translates to <blockquote> and \startlongquote in the intermediate files. This is ugly

markup, with a silly name, yet nevertheless it allowed me to work around a serious issue

I had with putting longer quotes into the thesis.

Yet the organizational logic of regular expressions result in much deeper implications

for the metastability.

Like calculus (which McLuhan considered a conquest of the tactile area of

numbers) regular expressions anticipate the unpredictable and bring re­

peatability to the immeasurable. A simple * (which means "zero or more

of the preceding item") compresses everything from zero to infinity into

a calculable scheme… while text parses and subdivides thought, * dis­

solves and absorbs all text. Gutenberg separated oral speech into figure

and ground, but * combines them again. Like the electron in its post-New­

tonian atom shell, * ranges freely and resides nowhere. (Oram 2002)

Generative Typesetting 87

This calculability enables not only a crucial substrate of this thesis (Markdown): my

effort to generate both HTML and PDF (through ConTeXT) from a single source relies

entirely on the hybridization of regular expressions. Knowledge of Haskell would have

allowed a deeper integration with Pandoc that would have reduced or perhaps even elim­

inated this top-level reliance on regular expressions. Regardless, the organizational logic

of Markdown arose as a result of the transduction of regular expressions and their hy­

bridization into the Perl programming language in which the first Markdown translation

tool was written.

After this initial development Markdown became increasingly hybridized into other

processual grammars, indicating an on-going individuation. This type of continuous

transduction implies that the metastability surrounding the interaction of human and

digital process exists in a deeply energetic state from which new transductions occur at

a high rate. Simondon says that the source within an individual for “future metastable

states from which new individuations can emerge” is the result of a link to its preindivid­

ual nature (12). This raises the question of whether the high ‘transductivity’ of Markdown

is linked to its emergence from within the highly flexible domains of regular expressions

and the computer metamedium.

6.3 Getting Beyond Glue

Over the course of performing this case study, it became obvious that the overcoming

of edge cases is a necessary aspect of generative typesetting. This realization generated

the seed of an idea that might prove useful in future attempts at organizing processual

grammars for generative typesetting: translation can be separated from effect. This sepa­

ration is akin to the division of content and form between HTML and CSS. The general

idea is that no programming languages should be involved in defining how this gets

translated into that. The translation layer becomes responsible solely for the recognition

that something will be translated, after which it consults workflow specific configuration

files. These files will declare the exact code which is to be substituted.

This kind of separation is not currently implemented in any wrapper software that I

am aware of, yet it represents a means incorporating the inevitable glue layer into the site

of translation itself as opposed to writing glue in one programming language or another.

Grammars of Process 88

This is not to say that “glue” will never be necessary, only that we should recognize

its perpetual existence in generative typesetting for multiple outputs. As such, it makes

sense to mitigate the source of glue, which can be found in the edge cases that must be

accounted for between output formats in any given workflow. The uniqueness of every

workflow means that the best solution lies in a system sufficiently flexible enough to

accommodate arbitrary demands and inevitable weirdness. While adherence to a stan­

dard syntax is possible, there should ultimately be as few constraints placed upon the

execution of a workflow as possible. As long as the configuration files are available,

the system should be able to render any output formats according to the logic declared

therein. There is a distinct opportunity here to provide a new alternative to academic

writing in the humanities.

Chapter 7

Conclusion

The complexity of this thesis arises from the many questions that arise out of an approach

based on practicing the object of study. Demonstrating the applicability of Simondon’s

ontogenesis to the dynamics of software is easy, as is the articulation of FLoSS as exem­

plary of both Enzensberger’s and Baudrillard’s elements of a revolutionary (or transgres­

sive) process. The breakdown of traditional conceptions of media is also a simple matter

of following the logic of an analytics of becoming, and likewise the power of FLoSS as a

site of collective becoming. From a process-oriented perspective, however, these points

are raised not for their own justification—instead they arise from the conditions of a

practice-based case study, a fact which indicates that such practice-based work can be

highly productive. In this conclusion we revisit the central conclusions of the thesis.

7.1 Conditions and Process

Through an investigation into the conditions that define and enable generative design,

this thesis has interrogated traditional definitions of media based on specificity and effect.

A significant problem with the theories of McLuhan, Bolter and Grusin, and Manovich is

their discursive presupposition that a ‘medium’ is an easily-distinguished phenomenon.

The ramifications of this presupposition is a murky understanding of what constitutes a

medium. Rather than attempt to codify and enforce a set of criteria for media, I have in­

stead opted to describe the dynamics underlying and enfolded by the on-going becoming
of the computer metamedium.

These dynamics are articulated in terms of processes hybridized according to the orga­
nizational logic of processual grammars and the unfolding of these hybridizations were

shown to fit the framework of Gilbert Simondon’s ontogenesis. The concepts of process

hybridity and processual grammar likewise map onto his framework in that process hy­
bridity reflects that the solution provided by a transduction “extracts the resolving struc­

ture from the tensions of the domain,” while grammars of process express the reorgani­

zation of those terms into a “concrete network” that excludes nothing of its origins while

Grammars of Process 90

at the same time restructuring and modifying the domain of possibility within a system

(Simondon 2009: 12).

In addition to ontogenesis’ focus on becoming, the investigation of the conditions of

generative design reflects on-going trends in scholarship to investigate the broader dy­

namics surrounding situations and practices. The scholarship of typographic historian

and designer Robin Kinross, for example, specifically attempts to fill a void in the lit­

erature of typography by providing a critical history whereing typography’s historical

phases of design are placed into the context of economic, social, and technological de­

velopments (Kinross 2004). When he states his position that “ ‘design’ is understood not

as a noun but as a verb: an activity and a process. And in this light, ideas become as real

as sheets of paper,” he expresses a rooted-ness in a process-oriented perspective (19).

The works of Bruno Latour likewise focus on methods of articulating events in terms of

relations between both human and non-human actors in a process-oriented perspective

known as Actor Network Theory (Latour 2005).

The focus on conditions also underlies Femke Snelting’s observation that the shape

of our tools reflexively determines the shape of our art (Snelting and Huyghebaert 2010).

Through a process-oriented, practice-based approach, this thesis has hoped to map the

dynamics of this “borderland” of materiality.

7.2 Ontogenesis is Non-Deterministic

Gilbert Simondon’s theory of ontogenesis offers a non-deterministic means for describ­

ing change that incorporates both the human and the digital in its consideration. This

capacity for non-deterministic discussion is obviously useful in media theory, where the

debate between technological and cultural determinism has raged for decades. Yet it also

simply fits where other theoretical frameworks fail to encompass the dynamics involved

in the evolution of the metamedium and the multitude of processual grammars that form

the conditions of generative design without privileging every assemblage of process as

a medium so that it fits the into their logic. Perhaps this is due to Simondon’s claim that

the “true principle of individuation is mediation” (7).

In addition to providing a means for describing the reflexive non-determinism em­

braces the abstract materiality which houses this thesis. First there is the highly transduc­

tive source file in which I am now typing. Second are the Pandoc templates which house

Conclusion 91

my stylistic intentions for the individuation into output formats, one each for HTML and

ConTEXt. Third is the Ruby script, an integral element that not only makes the goal of

multiple outputs attainable, it stores my abstract, subtitle, and key words—elements for

which neither Markdown nor Pandoc make affordances. Neither does ConTEXt, for that

matter: I had to write my own macro for placing the abstract and making the title page.

This fact highlights that the materiality of the PDF version of this thesis is intimately

tied to the specific grammar of process that is the ConTEXt macro package. Likewise, I

do not consider the HTML version an edition of this thesis without the presence of its

specific CSS and JavaScript—its materiality is dependent upon it, and if either is removed

or otherwise changed the HTML becomes ruled by a different logic.

After it processes the file through a conditional chain of regular expressions and

dumps the output-specific versions into the two individual files, the Ruby script calls

pandoc on each. Pandoc forms yet another element of the processual hybridity at work

here, a crucial one around which the entire operation is based. While it may not be

“shipped” with the outputs, it’s own organizational logic remains in those files such as

in the way it organizes and numbers sections in HTML or the precise technique it uses to

inject hyperlink macros in the ConTEXt source. The final transduction is the passing of

the ConTEXt source to the context command which uses the formal markup in the source

to place the text into a PDF file. A non-deterministic framework is the perfect means for

discussing the dynamics of this situation, where any the misplacement or faulty working

of any single element will result in an incomplete abstract materiality—nothing is more

important to the transduction than any other, which is the same as saying that elements

are equally imperative.

The contingencies of such an abstract materiality can be termed grammatic specifici­
ties. The articulation of this concept is seen as a first step for developing a dialog about

digital objects and platforms that does not immediately devolve into “medium escala­

tion” and misapplication of theory. A side effect of this phrasing, built as it is on top of

the concept of reflexive organization of process, is that it inspires the recognition that

grammars are alterable, their specificities malleable.

This brings us to the political stakes of FLoSS from the viewpoint of an analytics of

becoming. As FLoSS offers a site of reciprocal conversation that also fits Enzensberger’s

articulation of emancipatory uses of media, it represents a powerful organizational logic

Grammars of Process 92

that continuously restructures the metastability in ways that “self-level” the distributions

of agency engendered by the persistence of proprietary software (Kelty 2008: 10).

7.3 Implications for the Metastability

The shift in 70 years from the materially and conceptually cumbersome programming of

computers with wires to the types of hybridization enabled and exemplified by regular

expressions demonstrates an on-going and extremely productive individuation of the

computer. The degree of change is almost staggering. A key aspect of this thesis has

been to firmly situate humanity as deeply in the metastability that encompasses both

the human and the computer. For a machine to catch a glitch, it must first be developed

and built. The transindividual that is the recursive public of FLoSS exists to address

the ideological constraint that users should have the capacity to engage in a reciprocal

conversation with the organizational logics embedded in source code. As this project

has direct effects on the agencies of both human and non-human actors, the effects of

this recursive public are necessarily political.

From this perspective, the Italian Marxist Paolo Virno invokes Simondon in a partic­

ularly evocative way,

Let us now turn to the second of Simondon’s theses. It states that the

collective, the collective experience, the life of the group, is not, as we

usually believe, the sphere within which the salient traits of a singular

individual diminish or disappear; on the contrary, it is the terrain of a

new and more radical individuation. By participating in a collective, the

subject, far from surrendering the most unique individual traits, has the

opportunity to individuate, at least in part, the share of pre-individual

reality which all individuals carry within themselves. According to Si­

mondon, within the collective we endeavor to refine our singularity, to

bring it to its climax. Only within the collective, certainly not within the

isolated subject, can perception, language, and productive forces take on

the shape of an individuated experience. (Virno 2004: 80)

Not only is GNU/Linux produced by a collective, it is a collective in itself, a transin­
dividual composed of processual grammars that are relatively ineffective in isolation but

Conclusion 93

potent in their hybridization. Virno’s invocation of the collective, as opposed to the

“isolated subject,” for its power to change mirrors the underlying critique of proprietary

software that permeates this thesis. As a strictly functional object, proprietary software

is isolated in the very real sense that the solutions it provides for dealing with constraints

are controlled by a singular corporation. The collective use of proprietary software can

never overcome this reality and so the distinction of ‘sender’ and ‘receiver’, or ‘pro­

ducer’ and ‘consumer’, remain. The political effects of this distinction are spread across

the entirety of the metastability, limiting the agency and metapotential of actors who

choose—or are forced—to use proprietary software.

Viewed from an analytics of becoming, the transduction of FLoSS across the

metamedium of the computer offers a different perspective on how software is, and can

be, organized. This perspective has implications that are economic, social, cultural, and

political given the processes of collective becoming set in motion through software-based

engagements. Grammars of process are capable of alternative logics that reconfigure

metapotential into unique and radical individuations that distribute agency in impor­

tantly distinct ways, if only we direct ourselves to participating in the organization of

such a grand becoming. A core theme of this text, beginning with the practical consider­

ation of a free software publishing platform for academia and ending with a theoretical

conception of FLoSS as a transindividual becoming permanently transducting and redis­

tributing agencies, is the result of engaging with a practical concern. It wasn’t that a

justification for FLoSS was sought out, but rather that an actively reflexive engagement

with generative typesetting with FLoSS inspired not only this perspective of a transin­

dividual but an analytics of becoming that addresses gaps in existing media theory as

well. It is hoped that this active engagement with processual grammars continues to be

productive as we move into future configurations of the metastability.

Bibliography 95

Bibliography

Apple. (2010). “Overview of Quartz 2D”. From Quartz 2D Programming Guide,

Mac OS X Technical Library. Web. <http://developer.apple.com/mac/library
/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_overview
/dq_overview.html> (last accessed 31 August 2010).

Baudrillard, Jean. (1972). “Requiem for the Media”. From the collection The New Media
Reader, edited by Noah Wardrip-Fruin and Nick Montfort, 2003. Cambridge: MIT

Press.

Birkel, Garrett. (2004). ¨The Command Line In 2004¨. Web. <http://garote.bdmon­
keys.net/commandline/index.html> (last accessed 20 June 2010).

Berners-Lee, Tim. (1998). “The World Wide Web: A very short personal history”. w3.org.

Web. <http://www.w3.org/People/Berners-Lee/ShortHistory.html> (last ac­

cessed 5 August 2010).

Bolter, Jay David and Richard A. Grusin. (1996). “Remediation”. Configurations 4:3. PDF.

Bringhurst, Robert. (2008). The Elements of Typographic Style, version 3.2. Vancouver:

Hartley & Marks. Print.

Chun, Wendy Hui Kyong. (2004). ‘On Software, or the Persistence of Visual Knowledge’.

Grey Room 18: 26–51. PDF.

Chun, Wendy Hui Kyong. (2008). “On ‘Sourcery,’ or Code as Fetish”. Configurations 16:3,

p. 299–324. PDF.

contextgarden. (2010). “What is ConTEXt?”. contextgarden wiki. <http://wiki.con­
textgarden.net/What_is_ConTEXt> (last accessed 15 August 2010).

Cramer, Florian. (2001). “Digital Code and Literary Text”. netzliteratur. Web.

<http://www.netzliteratur.net/cramer/digital_code_and_literary_text.html> (last

accessed 5 June 2010).

Cramer, Florian. (2005). Words Made Flesh: Code, Culture, Imagination. Rotterdam: Piet

Zwart Institute. PDF. <http://pzwart.wdka.hro.nl/mdr/research/fcramer/words­
madeflesh/wordsmadefleshpdf>

http://developer.apple.com/mac/library/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_overview/dq_overview.html
http://developer.apple.com/mac/library/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_overview/dq_overview.html
http://developer.apple.com/mac/library/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_overview/dq_overview.html
http://garote.bdmonkeys.net/commandline/index.html
http://garote.bdmonkeys.net/commandline/index.html
http://www.w3.org/People/Berners-Lee/ShortHistory.html
http://wiki.contextgarden.net/What_is_{CONTEXT }
http://wiki.contextgarden.net/What_is_{CONTEXT }
http://www.netzliteratur.net/cramer/digital_code_and_literary_text.html
http://pzwart.wdka.hro.nl/mdr/research/fcramer/wordsmadeflesh/wordsmadefleshpdf
http://pzwart.wdka.hro.nl/mdr/research/fcramer/wordsmadeflesh/wordsmadefleshpdf

Grammars of Process 96

Cramer, Florian and Matthew Fuller. (2008). “Interface”. In Software Studies: a lexicon,

edited by Matthew Fuller. MIT Press: Cambridge. Print.

Cramer, Florian, Aymeric Mansoux and Michael Murtaugh. (2010). “How to Run an Art

School on Free and Open Source Software”. Presentation at the Libre Graph­

ics Meeting 2010, Brussels. Online video. <http://river-valley.tv/how-to-run-an
-art-school-on-free-and-open-source-software/> (last accessed 20 June 2010).

Cubitt, Sean. (2010). “Getting Specific About Medium Specificity”. Sean Cubitt’s Blog,

27 August 2010. Web. <http://seancubitt.blogspot.com/2010/08/getting-specific
-about-medium.html> (last accessed 31 August 2010).

Crockford, Douglas. (2010a). “Volume One: The Early Years”. 25 January 2010. Lec­

ture in the series Crockford on JavaScript. Streaming video and transcript. Web.

<http://developer.yahoo.com/yui/theater/video.php?v=crockonjs–1> (Last ac­

cessed 25 July 2010).

Crockford, Douglas. (2010b). “Episode IV: The Metamorphosis of Ajax”. Lecture in the

series Crockford on JavaScript. Streaming video and transcript. Web. <http://de­
veloper.yahoo.com/yui/theater/video.php?v=crockonjs–4> (last accesed 25 July

2010).

Foresman, Chris. “Apple may be looking to lock out unauthorized iOS users”. Ars
Technica. Web. <http://arstechnica.com/apple/news/2010/08/apple-consid­
ering-identification-of-unauthorized-ios-users.ars> (last accessed 23 August

2010).

Fuller, Matthew. “It looks like you’re trying to write a letter: Microsoft Word”. 2000. Web.

<http://www.nettime.org/Lists-Archives/nettime-l–0009/msg00040.html> (last

accessed 5 June 2010).

Galloway, Alexander. (2004). Protocol: How control exists after de-centralization. Cam­

bridge: MIT Press. Print.

Galloway, Alexander. (2006). “Language Wants to be Overlooked: On Software and

Ideology”. Journal of Visual Culture 5:315. PDF.

Garfinkel, Simson, Daniel Weise, and Steven Strassman (editors). (1994). The
UNIX-HATER´s Handbook. San Mateo: IDG Worldwide. PDF. <http://web.mit
.edu/~simsong/www/ugh.pdf>.

http://river-valley.tv/how-to-run-an-art-school-on-free-and-open-source-software/
http://river-valley.tv/how-to-run-an-art-school-on-free-and-open-source-software/
http://seancubitt.blogspot.com/2010/08/getting-specific-about-medium.html
http://seancubitt.blogspot.com/2010/08/getting-specific-about-medium.html
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-1
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-4
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-4
http://arstechnica.com/apple/news/2010/08/apple-considering-identification-of-unauthorized-ios-users.ars
http://arstechnica.com/apple/news/2010/08/apple-considering-identification-of-unauthorized-ios-users.ars
http://www.nettime.org/Lists-Archives/nettime-l-0009/msg00040.html
http://web.mit.edu/~simsong/www/ugh.pdf
http://web.mit.edu/~simsong/www/ugh.pdf

Bibliography 97

Gitelman, Lisa. (2008). Always Already New: Media, history, and the data of culture.

Cambridge: MIT Press. Print.

Gillimore, Dan. (2010). ¨This Mac devotee is moving to Linux¨. Salon.com. 20 June 2010.

Web. http://www.salon.com/technology/apple/index.html?story=/tech/dan_gill­
mor/2010/06/20/from_mac_to_linux (last accessed 21 June 2010).

Hagen, Hans. (2006). Interview with Dave Walden. TEX Users Group website. Web.

<https://www.tug.org/interviews/hagen.html> (last accessed 24 August 2010).

Hagen, Hans. (2009). The history of luaTeX. Netherlands: Pragma ADE. Web. <http:/
/www.pragma-ade.com/general/manuals/mk.pdf> (last accessed 5 June 2010).

Hansell, Saul. (2008). “Apple’s Capricious Rules for iPhone Apps”. Bits blog at the the

New York Times. Web. <http://bits.blogs.nytimes.com/2008/09/16/apples-capri­
cious-app-policy/> (last accessed 22 August 2010).

Hayles, N. Katherine. (2004) “Print is Flat, Code is Deep: The Importance of Media Spe­

cific Analysis”. Poetics Today 25:1. PDF.

Helft, Miguel and Ashlee Vance. (2010). “Apple Passes Microsoft as No. 1 in Tech”. The
New York Times, 26 May 2010. Web. <http://www.nytimes.com/2010/05/27/tech­
nology/27apple.html> (last accessed 26 August 2010).

Holt, Jason and Tom Miller. (2010). “Introducing the Google Command Line Tool”.

Open Source at Google blog. 18 June 2010. Web. <http://google-opensource
.blogspot.com/2010/06/introducing-google-command-line-tool.html> (last ac­

cessed 18 June 2010).

Kay, Alan and Adele Goldberg. (1977). “Personal Dynamic Media”. From the collection

The New Media Reader, edited by Noah Wardrip-Fruin and Nick Montfort, 2003.

Cambridge: MIT Press.

Kay, Alan. (1993). “The Early History of Smalltalk”. <http://gagne.homedns.org/tgagne
/contrib/EarlyHistoryST.html> (last accessed 17 June 2010).

Kelty, Chris. (2008). Two Bits: The Cultural Significance of Free Software. Chicago: Uni­

versity of Chicago Press. PDF. <http://twobits.net/pub/Kelty-TwoBits.pdf> (last

accessed 1 September 2010).

Kernel (computing). (2010). “Kernel (computing)”. Wikipedia. Web. <http://en.wikipedia
.org/wiki/Kernel_(computing)> (last accessed 18 June 2010).

http://www.salon.com/technology/apple/index.html?story=/tech/dan_gillmor/2010/06/20/from_mac_to_linux
http://www.salon.com/technology/apple/index.html?story=/tech/dan_gillmor/2010/06/20/from_mac_to_linux
https://www.tug.org/interviews/hagen.html
http://www.pragma-ade.com/general/manuals/mk.pdf
http://www.pragma-ade.com/general/manuals/mk.pdf
http://bits.blogs.nytimes.com/2008/09/16/apples-capricious-app-policy/
http://bits.blogs.nytimes.com/2008/09/16/apples-capricious-app-policy/
http://www.nytimes.com/2010/05/27/technology/27apple.html
http://www.nytimes.com/2010/05/27/technology/27apple.html
http://google-opensource.blogspot.com/2010/06/introducing-google-command-line-tool.html
http://google-opensource.blogspot.com/2010/06/introducing-google-command-line-tool.html
http://gagne.homedns.org/tgagne/contrib/EarlyHistoryST.html
http://gagne.homedns.org/tgagne/contrib/EarlyHistoryST.html
http://twobits.net/pub/Kelty-TwoBits.pdf
http://en.wikipedia.org/wiki/Kernel_%28computing%29
http://en.wikipedia.org/wiki/Kernel_%28computing%29

Grammars of Process 98

Kinross, Robin. (2004). Modern typography: an essay in critical history. London: Hyphen

Press. Print.

Knuth, Donald. (1999). Digital Typography. Stanford: CSLI. Print.

Latour, Bruno. Reassembling the Social. Oxford: Oxford University Press, 2005.

Lovitt, Michael. (2010). “Rubular: a Ruby regular expression editor”. rubular.com. Web.

<http://rubular.com> (last accessed 28 July 2010).

Lunenfeld, Peter. (2000). “Enemy of Nostalgia, Victim of the Present, Critic of the Future”.

Interview with Geert Lovink. nettime, 31 July 2000. Web. <http://www.net­
time.org/Lists-Archives/nettime-l–0008/msg00008.html> (last accessed 25 Au­

gust 2010).

Macintosh Programmer’s Workshop. (2010). “Macintosh Programmer’s Workshop”.

Wikipedia. Web. <http://en.wikipedia.org/wiki/Macintosh_Programmer’s_Work­
shop> (last accessed 23 August 2010).

Mackenzie, Adrian. (2006). “The Strange Meshing of Impersonal and Personal Forces in

Technological Action”. Culture, Theory & Critique 47(2). Print.

Manovich, Lev. (2001). The Language of New Media. MIT Press: Cambridge. Print.

Manovich, Lev. (2008). Software Takes Comman. MS Doc manuscript, published on­

line 20 November 2008. <http://softwarestudies.com/softbook/manovich_soft­
book_11_20_2008.doc>

McLuhan, Marshall. (1964). “Media Hot and Cold”. Understanding Media: The Extensions
of Man. Cambridge: MIT Press, 1994. PDF.

McLuhan, Marshall and Quentin Fiore. (1967). The Medium is the Massage: An inventory
of effects. California: Ginkgo Press, 2001. Print.

McLuhan, Marshall and Eric McLuhan. (1988). Laws of Media: The New Science. Toronto:

University of Toronto Press. Print. Recursive Publics and MPW Advantages.
(2010). “MPW Advantages”. Apple Developer Connection. Web. <http://de­
veloper.apple.com/tools/mpw-tools/advantages.html> (last accessed 25 August

2010).

Neary, Dave. (2010). “GNOME Census”. Safe as Milk (blog). <http://blogs.gnome.org
/bolsh/2010/07/28/gnome-census/> (last accessed 31 August 2010).

http://rubular.com
http://www.nettime.org/Lists-Archives/nettime-l-0008/msg00008.html
http://www.nettime.org/Lists-Archives/nettime-l-0008/msg00008.html
http://en.wikipedia.org/wiki/Macintosh_Programmer's_Workshop
http://en.wikipedia.org/wiki/Macintosh_Programmer's_Workshop
http://softwarestudies.com/softbook/manovich_softbook_11_20_2008.doc
http://softwarestudies.com/softbook/manovich_softbook_11_20_2008.doc
http://developer.apple.com/tools/mpw-tools/advantages.html
http://developer.apple.com/tools/mpw-tools/advantages.html
http://blogs.gnome.org/bolsh/2010/07/28/gnome-census/
http://blogs.gnome.org/bolsh/2010/07/28/gnome-census/

Bibliography 99

Ornstein, Severo. (2002). Computing in the Middle Ages: A view from the trenches
1955–1983. Authorhouse. Print.

Pasquinelli, Matteo. (2008). “The Ideology of Free Culture and the Grammar of Sabo­

tage”. Generation Online. Web. <www.generation-online.org/c/fc_rent4.pdf>

(last accessed 17 June 2010).

Paulus, Edo and Luna Maurer. (2005). “Placement/Displacement”. www.eude.nl. Web.

<http://www.eude.nl/projects/placement-displacement/> (last accessed 15 Au­

gust 2010).

Priest, Dana and William M. Arkin. (2010). “Top Secret America”. Washington Post.
Web. <http://projects.washingtonpost.com/top-secret-america/> (last accessed

8 August 2010).

PBS. (1996). “Triumph of the Nerds, Part Three”. Transcript of video documentary.

<http://www.pbs.org/nerds/part3.html> (last accessed 5 August 2010).

Raymond, Eric S. (2003). The Art of Unix Programming. Addison Wesley. <http://catb
.org/esr/writings/taoup/html/index.html> (last accessed 26 August 2010).

Regular expression. (2010). “Regular expression”. Wikipedia. Web. <http://en.wikipedia
.org/wiki/Regular_{}expression> (last accessed 28 July 2010).

Rosenberg, Scott. (2008). Dreaming in Code. New York: Three Rivers Press. Print.

Schuller, Gerlinde. (2008). “Dividing and sharing”. From the collection Designing Uni­
versal Knowledge: Flatland - Report 1. PDF.

Simondon, Gilbert. (2009). “The Position of the Problem of Ontogenesis”. Gregor

Flanders, trans. Parrhesia 7. PDF. <http://www.parrhesiajournal.org/parrhe­
sia07/parrhesia07_simondon1.pdf> (last accessed 5 June 2010).

Slashdot. (2007). “Are 80 Columns Enough?”. Slashdot. 7 July 2007. <http://ask.slash­
dot.org/article.pl?sid=07/07/07/1931246> (last accessed 14 August 2010).

Slepak, Greg. (2010). “Dear Apple: The iPhone deserves a better SDK”. Tao
effect (blog). 9 August 2010. <http://www.taoeffect.com/blog/2010/04/dear-ap­
ple-the-iphone-deserves-a-better-sdk/> (last accessed 22 August 2010).

www.generation-online.org/c/fc_rent4.pdf
http://www.eude.nl/projects/placement-displacement/
http://projects.washingtonpost.com/top-secret-america/
http://www.pbs.org/nerds/part3.html
http://catb.org/esr/writings/taoup/html/index.html
http://catb.org/esr/writings/taoup/html/index.html
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.parrhesiajournal.org/parrhesia07/parrhesia07_simondon1.pdf
http://www.parrhesiajournal.org/parrhesia07/parrhesia07_simondon1.pdf
http://ask.slashdot.org/article.pl?sid=07/07/07/1931246
http://ask.slashdot.org/article.pl?sid=07/07/07/1931246
http://www.taoeffect.com/blog/2010/04/dear-apple-the-iphone-deserves-a-better-sdk/
http://www.taoeffect.com/blog/2010/04/dear-apple-the-iphone-deserves-a-better-sdk/

Grammars of Process 100

Snelting, Femke. (2009). “The Making of”. Tracks in electr(on)ic fields. Brussels: Constant.

Web. http://ospublish.constantvzw.org/wp-content/uploads/makingof.pdf>

(last accessed 5 June 2010).

Snelting, Femke and Pierre Huyghebaert. (2010). Personal interview, with John Halti­

wanger. Brussels, Belgium.

Stallman, Richard. (1985). “The GNU Manifesto”. From the collection The New Media
Reader, edited by Noah Wardrip-Fruin and Nick Montfort, 2003. Cambridge: MIT

Press. Print

Stiegler, Bernard. (2010). “Memory”. From Critical Terms for Media Studies, edited by

W.J.T. Mitchell and Mark B. N. Hansen, p. 64–87. Chicago: University of Chicago

Press. Print.

Stephenson, Neal. (1999). “In the Beginning was the Command Line”. Essay. Web.

<http://artlung.com/smorgasborg/C_R_Y_P_T_O_N_O_M_I_C_O_N.shtml> (last

accessed 16 June 2010).

Text user interface. (2010). “Text user interface”. Wikipedia. Web. <http://en.wikipedia
.org/wiki/Text_{}user_{}interface> (last accessed 23 August 2010).

Quartz 2D. (2010). “Quartz 2D”. Wikipedia, Web. <http://en.wikipedia.org/wiki/Quartz_2D>

(last accessed 30 August 2010).

Williams, Raymond. (1974). “The Technology and the Society”. From Television: Tech­
nology and Cultural Form. London: Fontana Press.

Windows 1.0. (2010). “Windows 1.0”. Wikipedia. Web. <http://en.wikipedia.org/wiki/Win­
dows_1.0> (last accessed 19 June 2010).

Windows XP. (2010). “Windows XP”. Wikipedia. Web. <http://en.wikipedia.org/wiki/Win­
dows_xp> (last accessed 19 June 2010).

XNU. (2010). “XNU”. Wikipedia. Web. <http://en.wikipedia.org/wiki/XNU> (last ac­

cessed 18 June 2010).

http://ospublish.constantvzw.org/wp-content/uploads/makingof.pdf
http://artlung.com/smorgasborg/C_R_Y_P_T_O_N_O_M_I_C_O_N.shtml
http://en.wikipedia.org/wiki/Text_user_interface
http://en.wikipedia.org/wiki/Text_user_interface
http://en.wikipedia.org/wiki/Quartz_2D
http://en.wikipedia.org/wiki/Windows_1.0
http://en.wikipedia.org/wiki/Windows_1.0
http://en.wikipedia.org/wiki/Windows_xp
http://en.wikipedia.org/wiki/Windows_xp
http://en.wikipedia.org/wiki/XNU

